A novel spectral index for estimation of relative chlorophyll content of sugar beet

2021 ◽  
Vol 184 ◽  
pp. 106088
Author(s):  
Jing Zhang ◽  
Haiqing Tian ◽  
Di Wang ◽  
Haijun Li ◽  
Abdul Mounem Mouazen
2018 ◽  
Vol 84 (12) ◽  
pp. 801-811 ◽  
Author(s):  
Nijat Kasim ◽  
Rukeya Sawut ◽  
Abdugheni Abliz ◽  
Shi Qingdong ◽  
Balati Maihmuti ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1211
Author(s):  
Barbara Frąszczak ◽  
Monika Kula-Maximenko

The spectrum of light significantly influences the growth of plants cultivated in closed systems. Five lettuce cultivars with different leaf colours were grown under white light (W, 170 μmol m−2 s−1) and under white light with the addition of red (W + R) or blue light (W + B) (230 μmol m−2 s−1). The plants were grown until they reached the seedling phase (30 days). Each cultivar reacted differently to the light spectrum applied. The red-leaved cultivar exhibited the strongest plasticity in response to the spectrum. The blue light stimulated the growth of the leaf surface in all the plants. The red light negatively influenced the length of leaves in the cultivars, but it positively affected their number in red and dark-green lettuce. It also increased the relative chlorophyll content and fresh weight gain in the cultivars containing anthocyanins. When the cultivars were grown under white light, they had longer leaves and higher value of the leaf shape index. The light-green cultivars had a greater fresh weight. Both the addition of blue and red light significantly increased the relative chlorophyll content in the dark-green cultivar. The spectrum enhanced with blue light had positive influence on most of the parameters under analysis in butter lettuce cultivars. These cultivars were also characterised by the highest absorbance of blue light.


2020 ◽  
Vol 12 (10) ◽  
pp. 287
Author(s):  
Bruna N. Leite ◽  
Karla Gabrielle D. Pinto ◽  
Victor Alexandre H. F. dos Santos ◽  
Marciel J. Ferreira ◽  
Sônia Maria F. Albertino

The unsuitable use of herbicides damages many cultures. In cases of high infestations and presence of aggressive weed species in guarana (Paullinia cupana) culture, glyphosate application is advisable, but its impact on guarana physiology is unknown. Therefore, leaf photosynthetic characteristics were measured with the aim of identifying if the photosynthetic performance of guaranazeiro plants is affected in response to glyphosate application. Three glyphosate doses (0 (control); 324 and 432 g a.i. ha-1) were applied to two guaranazeiro cultivars (BRS-Andirá and BRS-Maués) selected on the basis of productive performance. An analysis was made of the effects of these doses on characteristics that represent the photosynthetic process: gas exchange, maximum quantum efficiency of PSII, performance index and chlorophyll content. The application of glyphosate did not affect the short-term responses relative chlorophyll content (SPAD index) and light use (chlorophyll a fluorescence). After 168 h, there were changes only in gas exchange variables. The effects of glyphosate doses on gas exchange was different between guaranazeiro cultivars. The photosynthetic performance of the guaranazeiro seems to be tolerant to the effects of short-term of glyphosate application.


2020 ◽  
Vol 10 (7) ◽  
pp. 2259 ◽  
Author(s):  
Haixia Qi ◽  
Bingyu Zhu ◽  
Lingxi Kong ◽  
Weiguang Yang ◽  
Jun Zou ◽  
...  

The purpose of this study is to determine a method for quickly and accurately estimating the chlorophyll content of peanut plants at different plant densities. This was explored using leaf spectral reflectance to monitor peanut chlorophyll content to detect sensitive spectral bands and the optimum spectral indicators to establish a quantitative model. Peanut plants under different plant density conditions were monitored during three consecutive growth periods; single-photon avalanche diode (SPAD) and hyperspectral data derived from the leaves under the different plant density conditions were recorded. By combining arbitrary bands, indices were constructed across the full spectral range (350–2500 nm) based on blade spectra: the normalized difference spectral index (NDSI), ratio spectral index (RSI), difference spectral index (DSI) and soil-adjusted spectral index (SASI). This enabled the best vegetation index reflecting peanut-leaf SPAD values to be screened out by quantifying correlations with chlorophyll content, and the peanut leaf SPAD estimation models established by regression analysis to be compared and analyzed. The results showed that the chlorophyll content of peanut leaves decreased when plant density was either too high or too low, and that it reached its maximum at the appropriate plant density. In addition, differences in the spectral reflectance of peanut leaves under different chlorophyll content levels were highly obvious. Without considering the influence of cell structure as chlorophyll content increased, leaf spectral reflectance in the visible (350–700 nm): near-infrared (700–1300 nm) ranges also increased. The spectral bands sensitive to chlorophyll content were mainly observed in the visible and near-infrared ranges. The study results showed that the best spectral indicators for determining peanut chlorophyll content were NDSI (R520, R528), RSI (R748, R561), DSI (R758, R602) and SASI (R753, R624). Testing of these regression models showed that coefficient of determination values based on the NDSI, RSI, DSI and SASI estimation models were all greater than 0.65, while root mean square error values were all lower than 2.04. Therefore, the regression model established according to the above spectral indicators was a valid predictor of the chlorophyll content of peanut leaves.


2020 ◽  
Vol 41 (4) ◽  
pp. 1093
Author(s):  
Suerlani Aparecida Ferreira Moreira ◽  
Pablo Fernando Santos Alves ◽  
Carlos Eduardo Corsato ◽  
Alcinei Mistico Azevedo

Maize hybrids contrasting for drought tolerance differ during the vegetative stage. Drought is the main constraint on maize production in developing nations. Differences during development between genetic materials of maize grown under water restriction suggest that the plant can be improved with a view to its adaptation. In maize, sensitivity to water stress can occur at any stage of its phenological development. However, few studies report its effects on the vegetative phase of the cycle. On this basis, this study was conducted to examine how shoot and root-system indices are expressed in cultivation under water deficit as well as determine which indicators best explain the difference between hybrids in the evaluated water regimes. Commercial seeds of hybrids BR1055 and DKB-390 (drought-tolerant) and BRS1010 (drought-sensitive) were germinated in PVC tubes (1.0 m × 0.1 m) in a randomized complete block design, in a 3 × 2 factorial arrangement. The experiment was developed in a greenhouse where two water regimes were tested: no water stress and with water stress from the VE stage. The soil consisted of quartz sand mixed with a commercial fertilizer. Stem and root traits were evaluated up to the V5 growth stage. Relative chlorophyll content, leaf temperature, stem length, phenology, shoot dry biomass, root length, root dry biomass, root surface area, root volume and D95 were responsive to water deficit. The parameters that allowed the distinction between the hybrids in water the regimes were relative chlorophyll content, leaf temperature, phenology and average root diameter.


2021 ◽  
Author(s):  
Wang Ning ◽  
Fu Fengzhen ◽  
Ji Jinfeng ◽  
Wang Peng ◽  
He Shuping ◽  
...  

Abstract A two-year field experiment was conducted to analyze the growth conditions, physical features, yield, and nitrogen use efficiency (NUE) of sugar-beet under limited irrigation conditions in northeast of China. A cultivar H003 was used as plant materials; six treatments (C1-C6) were included: C1, no nitrogen applied, rain-fed; C2, 120.00 kg nitrogen hm− 2, rain-fed; C3, no nitrogen applied, hole irrigation for seeding; C4, 120.00 kg nitrogen hm− 2, hole irrigation for seeding; C5, no nitrogen applied, hole irrigation for seeding; and C6, 120.00 kg nitrogen hm− 2, hole irrigation for seeding, and irrigation at foliage rapid growth stage. The irrigation supply was only 500 mL/plant once. Results showed C6 showed the highest chlorophyll content, dry matter accumulation, yield, etc. and had the best NUE among all the treatments. In conclusion, under the routine fertilization conditions of northeast of China, the cultivation measure of hole irrigation 500 mL/plant for seeding combined with irrigation 500 mL/plant at foliage rapid growth stage greatly improved sugar-beet yield and NUE.


2012 ◽  
Vol 65 (2) ◽  
pp. 67-72
Author(s):  
Agnieszka Stokłosa ◽  
Hamid Madani ◽  
Mahesh K. Upadhyaya

This greenhouse experiment evaluated the response of hoary alyssum plants, up to the rosette phase, to different levels of UV-B radiation. The experiment was carried out in the chambers, equipped with UV-B lamps, emitting biologically effective UV-B radiation of 0 (control), 4, 6 or 8 kJ. As a result, specific traits of the plants such as: leaf number, lamina length, leaf area, specific leaf weight, relative chlorophyll content and shoot biomass were unaffected by any of the UV-B treatments. Significant reductions in the share of large leaves, leaf stalk length and root biomass were noted for plants growing under 8 kJ UV-B<sub>BE</sub>.


2021 ◽  
pp. 1-7
Author(s):  
Ji-Jhong Chen ◽  
Shuyang Zhen ◽  
Youping Sun

Commercial optical chlorophyll meters estimate relative chlorophyll content using the ratio of transmitted red light and near-infrared (NIR) light emitted from a red light-emitting diode (LED) and an NIR LED. Normalized difference vegetation index (NDVI) sensors have red and NIR light detectors and may be used to estimate chlorophyll content by detecting the transmitted red and NIR light through leaves. In this study, leaf chlorophyll content of ‘Torrey’ buffaloberry (Shepherdia ×utahensis) plants treated with 0 mm [zero nitrogen (N)], 2 mm (medium N), or 4 mm (ample N) ammonium nitrate for 3 weeks were evaluated using two commercial chlorophyll meters and NDVI sensors. The absolute chlorophyll content was determined using chlorophyll extraction. Our results showed that plants receiving ample N and medium N had decreased transmitted red light (i.e., greater absorption in red light). Measurements of optical chlorophyll meters, NDVI sensors, and chlorophyll extraction similarly showed that plants receiving medium N and ample N had greater leaf chlorophyll content than those receiving zero N. Relative leaf chlorophyll content estimated using NDVI sensors correlated positively with those from the chlorophyll meters (P < 0.0001; r2 range, 0.56–0.82). Therefore, our results indicate that NDVI measurements are sensitive to leaf chlorophyll content. These NDVI sensors, or specialized sensors developed using similar principles, can be used to estimate the relative chlorophyll content of nursery crops and help growers adjust fertilization to improve plant growth and nutrient status.


Sign in / Sign up

Export Citation Format

Share Document