Application of high-temperature rapid catalytic technology to forecast the volumetric stability behavior of containing steel slag mixtures

2014 ◽  
Vol 50 ◽  
pp. 463-470 ◽  
Author(s):  
Wen-Ten Kuo ◽  
Chun-Ya Shu
2011 ◽  
Vol 291-294 ◽  
pp. 1851-1855
Author(s):  
Yue Long ◽  
Yan Shi ◽  
Yun Bo Lei ◽  
Hong Wei Xing ◽  
Jie Li ◽  
...  

Reconstruction of high temperature melting compound steel slag-fly ash can be effectively digest f-CaO in steel slag. The experimental result shows that the f-CaO contents in modified slag is greatly affected by fly ash addition(respectively 5%, 7%, 14%) when the temperature is 1580°C and constant temperature is 30min, the digestion rates are respectively 56.99%,63.69%,68.55%. Modified mineral content of the steel slag changes greatly, mainly reflects at enormous increase in magnetite, dicalcium silicate, tricalcium silicate, wustite and vitreous. By micro-structure analysis of several kinds of modified slag mineral, tricalcium silicate mainly shape for branch of tree, dicalcium silicate is in the form of a circular, wustite and vitreous mainly distribute in aggregation state. The above minerals can increase cementitious activity for modified slag becoming cement.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3885
Author(s):  
Wenhuan Liu ◽  
Hui Li ◽  
Huimei Zhu ◽  
Pinjing Xu

In this paper, a permeable steel-slag–bitumen mixture (PSSBM) was first prepared according to the designed mixture ratio. Then, the interaction characteristics between steel slag and bitumen were studied. The chemical interaction between bitumen and steel slag was explored with a Fourier-transform infrared spectrometer (FT-IR). The influence of steel-slag chemistry, mineral composition, and bitumen reaction on phase angle, complex shear modulus (CSM), and rutting factor was explored with dynamic shear rheological (DSR) tests. The PSSBM had better properties, including high permeability, water stability, Marshall stability, high-temperature (HT) stability, and low volume-expansion rate. Bitumen-coated steel slag can prevent heavy-metal ions from leaching. In the infrared spectra of the mixture of a chemical component of steel slag (calcium oxide) and bitumen, a new absorption peak at 3645 cm−1 was ascribed to the SiO–H stretching vibration, indicating that new organic silicon compounds were produced in the chemical reaction between calcium oxide and bitumen. SiO–H had an obvious enhancement effect on the interfacial adhesion and high-temperature rheological property of the mixture. In the mineral components of steel slag, dicalcium and tricalcium silicate reacted with bitumen and generated new substances. Chemical reactions between tricalcium silicate and bitumen were significant and had obvious enhancement effects on interfacial adhesion and high-temperature rheological properties of the mixture. The results of FT-IR and DSR were basically consistent, which revealed the chemical-reaction mechanism between steel-slag microcomponents and bitumen at the interface. SEM results showed that pits and grooves on the surface of the steel-slag aggregate, and the textural characteristics provide a framework-like function, thus strengthening the strength and adhesion of the steel-slag–bitumen aggregate interface.


2013 ◽  
Vol 59 ◽  
pp. 1-7 ◽  
Author(s):  
Ivanka Netinger ◽  
Damir Varevac ◽  
Dubravka Bjegović ◽  
Dragan Morić

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5190
Author(s):  
Laura Boquera ◽  
David Pons ◽  
Ana Inés Fernández ◽  
Luisa F. Cabeza

Six supplementary cementitious materials (SCMs) were identified to be incorporated in concrete exposed to high-temperature cycling conditions within the thermal energy storage literature. The selected SCMs are bauxite, chamotte, ground granulated blast furnace slag, iron silicate, silica fume, and steel slag. A microstructural characterization was carried out through an optical microscope, X-ray diffraction analysis, and FT-IR. Also, a pozzolanic test was performed to study the reaction of SCMs silico-aluminous components. The formation of calcium silica hydrate was observed in all SCMs pozzolanic test. Steel slag, iron silicate, and ground granulated blast furnace slag required further milling to enhance cement reaction. Moreover, the tensile strength of three fibers (polypropylene, steel, and glass fibers) was tested after exposure to an alkalinity environment at ambient temperature during one and three months. Results show an alkaline environment entails a tensile strength decrease in polypropylene and steel fibers, leading to corrosion in the later ones.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Hechuan Li ◽  
Jianying Yu ◽  
Quantao Liu ◽  
Yuanyuan Li ◽  
Yaqi Wu ◽  
...  

It is consensual that the self-healing property of asphalt concrete can repair the damage inside it during high temperature and rest period. In order to not affect the traffic, the rest period of asphalt pavement is very short and uncontrollable; so, it is necessary to obtain enough high temperature in a limited time to achieve higher healing efficiency of asphalt concrete. The purpose of this paper is to study the induction heating efficiency and healing behaviors of asphalt concretes doped with different conductive additives. Steel fiber, steel grit, and steel slag were added to asphalt mixtures as conductive additives to prepare induction healing asphalt concretes. The steel grit and steel slag were added to replace the aggregates of corresponding particle size by equal volume to ensure the consistency of asphalt concrete volume, which can avoid degrading the performance of asphalt concrete due to the change of porosity. The induction heating efficiency and healing rate of asphalt concrete were quantified by infrared camera and three-point bending-healing experiment, respectively. The results showed that the thermal properties of asphalt concrete changed with the addition of different conductive additives. The asphalt concrete with steel fiber had the best induction heating property. While steel slag had extremely weak induction heating speed, the better thermal insulation property of the asphalt concrete with steel slag resulted in a higher induction healing rate. It was suggested to add steel slag to induction healing asphalt concrete to improve the healing rate.


2014 ◽  
Vol 507 ◽  
pp. 337-342
Author(s):  
Meng Yuan Li ◽  
Jin Hu

The influence of high-temperature curing on the compressive strength and chloride permeability of the concrete containing ground iron and steel slag (GISS) was investigated. Under standard curing condition (20°C), the early-age compressive strength of the concrete with GISS is much lower than that of the pure cement concrete. The activity of GISS is more sensitive to the increase of curing temperature than that of cement. The increase amplitude of early-age strength of the concrete with GISS is much greater than that of the pure cement concrete by increasing curing temperature. Increasing curing temperature tends to decease the late-age strength and enhance the late-age permeability of concrete. The negative effect of increasing curing temperature on the late-age properties of the concrete with GISS is smaller than that of the pure cement concrete.


2022 ◽  
Vol 12 (2) ◽  
pp. 704
Author(s):  
Jakub Ramult ◽  
Klaudia Wiśniewska-Tobiasz ◽  
Ryszard Prorok ◽  
Dominika Madej

This study investigated the effect of the CaO/SiO2 mass ratio of steel slag on the corrosion behavior of spinel-forming alumina-based castables with a content of MgO (3–7 wt.%). Equiweight mixtures of castables and slags were calculated by FactSage, observed by HMTA, fired at 1350 °C, and investigated by XRD. From these results, we conclude that the presence of SiO2-rich phases accelerates the growth of the liquid phase in a narrow temperature range for the tested samples, which accelerates the degradation of castables. The static corrosion test was conducted by means of the coating method at 1450 °C. The corrosion index (IC) in the regions of castables affected by slags was calculated. Phases and phase distributions were evaluated by SEM-EDS. From these results, we conclude that for the slag with the lowest mass ratio of CaO/SiO2 (1.1), the reaction zone occurs only below the slag-refractory interface, which indicates the aggressive character of this slag.


Sign in / Sign up

Export Citation Format

Share Document