Degradation evaluation index of asphalt pavement based on mechanical performance of asphalt mixture

2017 ◽  
Vol 140 ◽  
pp. 75-81 ◽  
Author(s):  
Ying Gao ◽  
Dawei Geng ◽  
Xiaoming Huang ◽  
Guoqiang Li
2009 ◽  
Vol 620-622 ◽  
pp. 719-722
Author(s):  
Hong Wang ◽  
Shao Peng Wu ◽  
Ling Pang

Flexible pavement-asphalt mixture plays an important role in structures of the primary road and bridge at present. However, the mixture is a type of viscoelstic material and is sensitive to environment temperature, especially a high temperature. The permanent deformation due to high temperature and the material’s viscoelastic shorten the service life of the road and even lead to traffic accident. Therefore it is necessary to analyze the pavement’s mechanical performance. In the study, the viscoelastic constitutive equation of the mixture is transformed to Prony Series. The objective of this study is to characterize the stability of asphalt pavement at high temperatures with a three-dimensional finite element and accurately predict the pavement’s strain and stress in vehicle load.


2018 ◽  
Vol 3 (2) ◽  
pp. 171
Author(s):  
Intan Kumalasari ◽  
Madzlan Napiah ◽  
Muslich H. Sutanto

Phase Change Material (later to be referred as PCM) has been successfully utilized in some areas. PCM has emerged as one of the materials for pavement temperature reducing due to its latent heat. Some research has been done regarding this topic. The objective of this paper is to review the development of PCM in asphalt pavement. The review has shown that organic PCM appears as the favourite PCM in asphalt concrete studies. Choice of porous material depends on method of incorporation. Reduction of temperature in PCM-asphalt mixture compared to conventional one is undoubtable. However, the mechanical performance of PCM-asphalt mixture need to be explored.


CONSTRUCTION ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 44-53
Author(s):  
S. M. Shahnewaz ◽  
Khairil Azman Masri ◽  
N. A. A. A. Ghani

Nowadays porous asphalt pavement increase usage other than the traditional type of asphalt pavement. In that sense porous asphalt specially use in the parking areas and walk ways for pedestrian. There are diverse ways that has been done in order to stick up to permanent degradation such as adding fibers and modifiers like polymers, chemical modifiers, expandars, oxidants and antioxidents, hydrocarbons and antistripping to enhance the fatigue and service life of the pavement. To use these type of additives in porous asphalt pavement some additive increase the mechanical performance of porous asphalt mixture and improve the serviceability of the pavement. Digital image processing use these type of pavement to reduce the air void of the asphalt mixture and increase the physical properties of the porous asphalt pavement. This review paper mainly discuss the overall performance and advantage of porous asphalt using different types of additives.


Author(s):  
Feng Li ◽  
Gulnigar Ablat ◽  
Siqi Zhou ◽  
Yixin Liu ◽  
Yufeng Bi ◽  
...  

AbstractIn ice and snow weather, the surface texture characteristics of asphalt pavement change, which will significantly affect the skid resistance performance of asphalt pavement. In this study, five asphalt mixture types of AC-5, AC-13, AC-16, SMA-13, SMA-16 were prepared under three conditions of the original state, ice and snow. In this paper, a 2D-wavelet transform approach is proposed to characterize the micro and macro texture of pavement. The Normalized Energy (NE) is proposed to describe the pavement texture quantitatively. Compared with the mean texture depth (MTD), NE has the advantages of full coverage, full automation and wide analytical scale. The results show that snow increases the micro-scale texture because of its fluffiness, while the formation of the ice sheets on the surface reduces the micro-scale texture. The filling effect of snow and ice reduces the macro-scale texture of the pavement surface. In a follow-up study, the 2D-wavelet transform approach can be applied to improve the intelligent driving braking system, which can provide pavement texture information for the safe braking strategy of driverless vehicles.


2019 ◽  
Vol 81 (6) ◽  
Author(s):  
Norfazira Mohd Azahar ◽  
Norhidayah Abdul Hassan ◽  
Ramadhansyah Putra Jaya ◽  
Hasanan Md. Nor ◽  
Mohd Khairul Idham Mohd Satar ◽  
...  

The use of cup lump rubber as an additive in asphalt binder has recently become the main interest of the paving industry. The innovation helps to increase the natural rubber consumption and stabilize the rubber price. This study evaluates the mechanical performance of cup lump rubber modified asphalt (CMA) mixture in terms of resilient modulus, dynamic creep and indirect tensile strength under aging conditions. The CMA mixture was prepared using dense-graded Marshall-designed mix and the observed behavior was compared with that of conventional mixture. From the results, both mixtures passed the volumetric properties as accordance to Malaysian Public Work Department (PWD) specification. The addition of cup lump rubber provides better resistance against permanent deformation through the enhanced properties of resilient modulus and dynamic creep. Furthermore, the resilient modulus of CMA mixture performed better under aging conditions.  


2012 ◽  
Vol 256-259 ◽  
pp. 1748-1753
Author(s):  
Bin Zhao ◽  
Pei Wen Hao

As vehicle flow on arterial highway in Inner Mongolia sharply increased, the originally designed natural increase rate of 8% per year has been exceeded on the vehicle flow in some sections. According to statistics, monthly average vehicle flow on major section of G6 expressway has reached a standard flow of 67478 vehicles per day and night, of which in 70-80% are large ones for coal transportation. Therefore, pavement load and road capacity have exceed the designed expressway load capacity. At present, semi-rigid base asphalt pavement structure is still widely used for high-grade highway pavement in Inner Mongolia. With years of construction for such pavement structure, a great deal of valuable experience has been gained on construction technology. However, there are still a few deficiencies in the quality of raw materials, gradation control of asphalt mixture and adjustment of equipment, etc. Hohhot circle expressway connects with the G6 and G7 expressways, suffering from problems such as large vehicle flow and load overweight. This paper introduced a key technique that should be properly controlled during construction of such pavement structure, emphasized technique control and management of the following aspects, i.e. ballast sizes and gradation control, asphalt concrete mixture, adjustment of pavers, validation of mixing proportion in production and reasonable arrangement of process, and summarized corresponding technical measures taken during construction of asphalt pavement in this project.


2021 ◽  
Vol 304 ◽  
pp. 124653
Author(s):  
Osvaldo Muñoz-Cáceres ◽  
Aitor C. Raposeiras ◽  
Diana Movilla-Quesada ◽  
Daniel Castro-Fresno ◽  
Manuel Lagos-Varas ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 211
Author(s):  
Hongfeng Li ◽  
Xiangwen Lin ◽  
Hongguang Wang

In order to address water damage of asphalt pavement, reduce the occurrence of water-related potholes, deformation, and other diseases, and improve the performance and service life of the pavement, a nano-TiO2 superhydrophobic coating (PSC) on asphalt pavement was prepared from waterborne polyurethane and nano-TiO2 modified by stearic acid. FT-IR measured stearic acid successfully modified low surface energy substance on the surface of nano-TiO2. The SEM image shows that the PSC has a rough surface structure. The contact angle and rolling angle of the PSC in the contact angle test are 153.5° and 4.7°, respectively. PSC has a super-hydrophobic ability, which can improve the water stability of the asphalt mixture. Although the texture depth and pendulum value have been reduced by 2.5% and 4.4%, respectively, they all comply with the standard requirements. After the abrasion resistance test, the PSC coating still has a certain hydrophobic ability. These results surface PSC coating can effectively reduce water damage on asphalt pavement, and has considerable application value.


Sign in / Sign up

Export Citation Format

Share Document