Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymer

2020 ◽  
Vol 247 ◽  
pp. 118641 ◽  
Author(s):  
Nur Ain Jaya ◽  
Liew Yun-Ming ◽  
Heah Cheng-Yong ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Kamarudin Hussin
Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 339
Author(s):  
Gonglian Chen ◽  
Fenglan Li ◽  
Pengfei Jing ◽  
Jingya Geng ◽  
Zhengkai Si

With the premise of investigating mechanical properties, the thermal conductivity of autoclaved aerated concrete (AAC) is a key index of self-insulation block walls for building energy conservation. This study focused on the effect of pore structures on the mechanical performance and thermal conductivity of AAC with the comparison of AAC base materials. Different kinds of AAC and their base materials were prepared and experimentally investigated. While maintaining a consistent mix proportion of the AAC base material, the pore structure of AAC was changed by the dosage of aluminum power/paste, foam stabilizer, and varying the stirring time of aluminum paste. The steam curing systems of AAC and the base material were determined based on SEM (Scanning Electronic Microscopy) and XRD (X-Ray Diffraction) tests. With almost the same apparent density, the pore size decreased with the increasing content of foam stabilizer, and the mixing time of aluminum paste and foam stabilizer has a great influence on pore size. The thermal conductivity test and compressive test results indicated that that pore size had an effect on the thermal conductivity, but it had little effect on the compressive strength, and the thermal conductivity of sand aeration AAC was 8.3% higher than that of fly ash aeration AAC; the compressive strength was 10.4% higher, too. With almost the same apparent density, the regression mathematical model indicates that the thermal conductivity of AAC increased gradually with the increase of pore size, but it had little effect on the compressive strength. From the test results of basic mechanical properties, the mechanical model of cubic compressive strength, elastic modulus, axial compressive strength, and splitting tensile strength was obtained. The proposed stress–strain relationship model could well describe the relationship of AAC and the base material at the rising section of the curve.


2019 ◽  
Vol 295 ◽  
pp. 105-109
Author(s):  
Ye Li ◽  
Heng Ze Zhao ◽  
Xu Dong Cheng

Adiabatic foam was fabricated successfully using sodium silicate as the raw material with pre-sintered fly ash as additive. Fly ash was pre-sintered at 500 to 900 oC and the effect of the pre-sintering temperature on the performance, including the thermal conductivity, density, compressive strength and microstructure, was researched. The results show that the pre-sintering process effectively reduces the density of the samples while the thermal conductivity and compressive strength are higher than those of the samples fabricated by the fly ash without being pre-sintered. Moreover, the samples exhibit tri-modal spherical pore structure with macropores and mesopores. The pore size remains unchanged until the pre-sintering temperature exceeds 700 oC, and then starts to increase.


2014 ◽  
Vol 899 ◽  
pp. 393-398
Author(s):  
Mikuláš Šveda ◽  
Radomír Sokolař

The regular exit check of the brick products is an important step as to meet the quality in brickworks. These products are characterized by pore and lightweight brick body, therefore, their physical properties depend primarily on the specific characteristics their pore structure. We can determine on the basis of one well-known property and the correlation relationships other characteristics of the brick body, since there is an assumption that these properties between themselves "connected". Authors propose to use this knowledge in the exit speed check directly at the factory. In this case could be monitored only one property and one that can be quickly and reliably determined, such as thermal conductivity of using an apparatus Isomet. It is then possible to set for the existence of a correlation function between thermal conductivity and compressive strength of brick body at regular intervals compressive strength without using a hydraulic press.


2020 ◽  
Vol 108 (2) ◽  
pp. 203
Author(s):  
Samia Djadouf ◽  
Nasser Chelouah ◽  
Abdelkader Tahakourt

Sustainable development and environmental challenges incite to valorize local materials such as agricultural waste. In this context, a new ecological compressed earth blocks (CEBS) with addition of ground olive stone (GOS) was proposed. The GOS is added as partial clay replacement in different proportions. The main objective of this paper is to study the effect of GOS levels on the thermal properties and mechanical behavior of CEB. We proceeded to determining the optimal water content and equivalent wet density by compaction using a hydraulic press, at a pressure of 10 MPa. The maximum compressive strength is reached at 15% of the GOS. This percentage increases the mechanical properties by 19.66%, and decreases the thermal conductivity by 37.63%. These results are due to the optimal water responsible for the consolidation and compactness of the clay matrix. The substitution up to 30% of GOS shows a decrease of compressive strength and thermal conductivity by about 38.38% and 50.64% respectively. The decrease in dry density and thermal conductivity is related to the content of GOS, which is composed of organic and porous fibers. The GOS seems promising for improving the thermo-mechanical characteristics of CEB and which can also be used as reinforcement in CEBS.


2018 ◽  
Vol 17 (9) ◽  
pp. 2023-2030
Author(s):  
Arnon Chaipanich ◽  
Chalermphan Narattha ◽  
Watcharapong Wongkeo ◽  
Pailyn Thongsanitgarn

2020 ◽  
Vol 38 (10A) ◽  
pp. 1522-1530
Author(s):  
Rawnaq S. Mahdi ◽  
Aseel B. AL-Zubidi ◽  
Hassan N. Hashim

This work reports on the incorporation of Flint and Kaolin rocks powders in the cement mortar in an attempt to improve its mechanical properties and produce an eco-friendly mortar. Flint and Kaolin powders are prepared by dry mechanical milling. The two powders are added separately to the mortars substituting cement partially. The two powders are found to improve the mechanical properties of the mortars. Hardness and compressive strength are found to increase with the increase of powders constituents in the cement mortars. In addition, the two powders affect water absorption and thermal conductivity of the mortar specimens which are desirable for construction applications. Kaolin is found to have a greater effect on the mechanical properties, water absorption, and thermal conductivity of the mortars than Flint. This behavior is discussed and analyzed based on the compositional and structural properties of the rocks powders.


Alloy Digest ◽  
2020 ◽  
Vol 69 (11) ◽  

Abstract Meehanite GB300 is a pearlitic gray cast iron that has a minimum tensile strength of 300 MPa (44 ksi), when determined on test pieces machined from separately cast, 30 mm (1.2 in.) diameter test bars. This grade exhibits high strength while still maintaining good thermal conductivity and good machinability. It is generally used for applications where the thermal conductivity requirements preclude the use of other higher-strength materials, such as spheroidal graphite cast irons, which have inferior thermal properties. This datasheet provides information on physical properties, hardness, tensile properties, and compressive strength as well as fatigue. It also includes information on low and high temperature performance as well as heat treating, machining, and joining. Filing Code: CI-75. Producer or source: Meehanite Metal Corporation.


2016 ◽  
Vol 848 ◽  
pp. 272-278 ◽  
Author(s):  
Sha Qiu ◽  
Yu Fei Tang ◽  
Kang Zhao

Porous Al2O3 ceramics were fabricated by directional freezing and low pressure drying with sucrose solution as the cryogenic medium. The pore structure of the porous ceramics was changed by annealing in the environment of higher than the glass transition temperature of sucrose solution after directional freezing because of changing the size and distribution of crystalline solid. The effects of the annealing time on the pore structure, open porosity and mechanical property of porous ceramics were investigated. The results showed that the pore size of porous ceramics increased substantially with the increase of annealing time. The open porosity of porous ceramics changed slightly with the increase of annealing time, while the compressive strength of porous ceramics showed a trend of decrease. The pore size range of porous Al2O3 ceramics fabricated is from 6.0μm to 110.2μm, the range of porosity was 40.35%-64.58%, the compressive strength range of porous Al2O3 ceramics was from 25.9MPa-126.6MPa. The porous Al2O3 ceramics with different pore structure can be obtained by changing the annealing time.


Sign in / Sign up

Export Citation Format

Share Document