scholarly journals Effect of Pore Structure on Thermal Conductivity and Mechanical Properties of Autoclaved Aerated Concrete

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 339
Author(s):  
Gonglian Chen ◽  
Fenglan Li ◽  
Pengfei Jing ◽  
Jingya Geng ◽  
Zhengkai Si

With the premise of investigating mechanical properties, the thermal conductivity of autoclaved aerated concrete (AAC) is a key index of self-insulation block walls for building energy conservation. This study focused on the effect of pore structures on the mechanical performance and thermal conductivity of AAC with the comparison of AAC base materials. Different kinds of AAC and their base materials were prepared and experimentally investigated. While maintaining a consistent mix proportion of the AAC base material, the pore structure of AAC was changed by the dosage of aluminum power/paste, foam stabilizer, and varying the stirring time of aluminum paste. The steam curing systems of AAC and the base material were determined based on SEM (Scanning Electronic Microscopy) and XRD (X-Ray Diffraction) tests. With almost the same apparent density, the pore size decreased with the increasing content of foam stabilizer, and the mixing time of aluminum paste and foam stabilizer has a great influence on pore size. The thermal conductivity test and compressive test results indicated that that pore size had an effect on the thermal conductivity, but it had little effect on the compressive strength, and the thermal conductivity of sand aeration AAC was 8.3% higher than that of fly ash aeration AAC; the compressive strength was 10.4% higher, too. With almost the same apparent density, the regression mathematical model indicates that the thermal conductivity of AAC increased gradually with the increase of pore size, but it had little effect on the compressive strength. From the test results of basic mechanical properties, the mechanical model of cubic compressive strength, elastic modulus, axial compressive strength, and splitting tensile strength was obtained. The proposed stress–strain relationship model could well describe the relationship of AAC and the base material at the rising section of the curve.

2021 ◽  
Author(s):  
Xinyu Cong ◽  
Yiqiu Tan ◽  
Shuang Lu ◽  
Zhaojia Wang ◽  
Tianyong Huang

Abstract Self-ignition coal gangue (SCG) used as one of precursors to fabricate aerated autoclaved concrete (AAC). Aiming at studying water absorptivity and frost resistance performance of self-ignition coal gangue aerated autoclaved concrete (SCGAAC), three-period water absorbing tests and freezing-thawing tests were carried out and the corresponding results were recorded and analyzed. In order to modify the water absorptivity of SCGAAC, foam stabilizer was applied to adjust pore structure while calcium stearate was expected to change hydrophilic feature of CG. It was demonstrated that the compressive strength of SCGAAC containing foam stabilizer or calcium stearate declined at different levels, although the porosity became lower slightly. For water absorptivity, foam stabilizer failed to decrease the water content at any period and even increased water absorbing rates. Calcium stearate controlled water absorbing rate successfully but the ultimate water content hardly reduced. All of the SCGAAC samples exhibited intact appearance after 50 freezing-thawing cycles and showed excellent frost resistance performance. Three models were proposed to predict water absorptivity and frost resistance performance of SCGAAC and the corresponding prediction results matched test resulted well.


2019 ◽  
Vol 295 ◽  
pp. 105-109
Author(s):  
Ye Li ◽  
Heng Ze Zhao ◽  
Xu Dong Cheng

Adiabatic foam was fabricated successfully using sodium silicate as the raw material with pre-sintered fly ash as additive. Fly ash was pre-sintered at 500 to 900 oC and the effect of the pre-sintering temperature on the performance, including the thermal conductivity, density, compressive strength and microstructure, was researched. The results show that the pre-sintering process effectively reduces the density of the samples while the thermal conductivity and compressive strength are higher than those of the samples fabricated by the fly ash without being pre-sintered. Moreover, the samples exhibit tri-modal spherical pore structure with macropores and mesopores. The pore size remains unchanged until the pre-sintering temperature exceeds 700 oC, and then starts to increase.


2020 ◽  
Vol 38 (10A) ◽  
pp. 1522-1530
Author(s):  
Rawnaq S. Mahdi ◽  
Aseel B. AL-Zubidi ◽  
Hassan N. Hashim

This work reports on the incorporation of Flint and Kaolin rocks powders in the cement mortar in an attempt to improve its mechanical properties and produce an eco-friendly mortar. Flint and Kaolin powders are prepared by dry mechanical milling. The two powders are added separately to the mortars substituting cement partially. The two powders are found to improve the mechanical properties of the mortars. Hardness and compressive strength are found to increase with the increase of powders constituents in the cement mortars. In addition, the two powders affect water absorption and thermal conductivity of the mortar specimens which are desirable for construction applications. Kaolin is found to have a greater effect on the mechanical properties, water absorption, and thermal conductivity of the mortars than Flint. This behavior is discussed and analyzed based on the compositional and structural properties of the rocks powders.


CivilEng ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 523-540
Author(s):  
Imed Beghoura ◽  
Joao Castro-Gomes

This study focuses on the development of an alkali-activated lightweight foamed material (AA-LFM) with enhanced density. Several mixes of tungsten waste mud (TWM), grounded waste glass (WG), and metakaolin (MK) were produced. Al powder as a foaming agent was added, varying from 0.009 w.% to 0.05 w.% of precursor weight. Expanded granulated cork (EGC) particles were incorporated (10% to 40% of the total volume of precursors). The physical and mechanical properties of the foamed materials obtained, the effects of the amount of the foaming agent and the percentage of cork particles added varying from 10 vol.% to 40% are presented and discussed. Highly porous structures were obtained, Pore size and cork particles distribution are critical parameters in determining the density and strength of the foams. The compressive strength results with different densities of AA-LFM obtained by modifying the foaming agent and cork particles are also presented and discussed. Mechanical properties of the cured structure are adequate for lightweight prefabricated building elements and components.


2011 ◽  
Vol 335-336 ◽  
pp. 1454-1458
Author(s):  
Jing Xian Zhang ◽  
Bi Qin Chen ◽  
Dong Liang Jiang ◽  
Qing Ling Lin ◽  
Zhong Ming Chen ◽  
...  

In the present work, porous HA scaffolds with well controlled pore size, porosity and high compressive strength were prepared by aqueous gelcasting. PMMA beads with different size were used as the pore forming agent. The compositions, microstructure and properties of porous HA bioceramics were analyzed by XRD, SEM, Hg porosimetry etc. The mechanical properties were also tested. For scaffolds with the porosity as 70%, the average compressive strength was 11.9±1.7 MPa. Results showed that glecasting process can be used for the preparation of porous HA biomaterials with well controlled pore size and improved mechanical properties.


2015 ◽  
Vol 749 ◽  
pp. 278-281
Author(s):  
Jia Horng Lin ◽  
Jing Chzi Hsieh ◽  
Jin Mao Chen ◽  
Wen Hao Hsing ◽  
Hsueh Jen Tan ◽  
...  

Geotextiles are made of polymers, and their conjunction with different processes and materials can provide geotextiles with desirable characteristics and functions, such as filtration, separation, and drainage, and thereby meets the environmental requirements. Chemical resistant and mechanical strong polymers, including polyester (PET) and polypropylene (PP), are thus used to prolong the service life of the products made by such materials. This study proposes highly air permeable geotextiles that are made with different thicknesses and various needle punching speeds, and the influences of these two variables over the pore structure and mechanical properties are then examined. PET fibers, PP fibers, and recycled Kevlar fibers are blended, followed by being needle punched with differing spaces and speeds to form geotextiles with various thicknesses and porosities. The textiles are then evaluated for their mechanical strength and porosity. The test results show that a thickness of 4.5 cm and 1.5 cm demonstrate an influence on the tensile strength of the geotextiles, which is ascribed to the webs that are incompletely needle punched. However, the excessive needle punching speed corresponding to a thickness of 0.2 cm results in a decrease in tensile strength, but there is also an increase in the porosity of the geotextiles.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Mahyuddin Ramli

This study was conducted to determine some physical and mechanical properties of high-strength flowable mortar reinforced with different percentages of palm fiber (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6% as volumetric fractions). The density, compressive strength, flexural strength, and toughness index were tested to determine the mechanical properties of this mortar. Test results illustrate that the inclusion of this fiber reduces the density of mortar. The use of 0.6% of palm fiber increases the compressive strength and flexural strength by about 15.1%, and 16%, respectively; besides, the toughness index (I5) of the high-strength flowable mortar has been significantly enhanced by the use of 1% and more of palm fiber.


2014 ◽  
Vol 887-888 ◽  
pp. 824-829
Author(s):  
Qing Fang Lv ◽  
Ji Hong Qin ◽  
Ran Zhu

Laminated veneer lumber is taken as an object of study, and use LVL specimens of different sizes for compression test and tensile test. The goal of the experiment is to investigate the size effect on compressive strength and tensile strength as well as the influence of the secondary glued laminated face, which appears in the secondary molding processes. The results show that both compressive strength and tensile strength have the size effect apparently and the existence of the secondary glued laminated face lower the compressive strength of LVL specimens. Afterwards, the relationship between compressive strength and volume along with tensile strength and area are obtained by the test results.


2010 ◽  
Vol 168-170 ◽  
pp. 564-569
Author(s):  
Guang Lin Yuan ◽  
Jing Wei Zhang ◽  
Jian Wen Chen ◽  
Dan Yu Zhu

This paper makes an experimental study of mechanical properties of high-strength pumpcrete under fire, and the effects of heating rate, heating temperature and cooling mode on the residual compressive strength(RCS) of high-strength pumpcrete are investigated. The results show that under air cooling, the strength deterioration speed of high-strength concrete after high temperature increases with the increase of concrete strength grade. Also, the higher heating temperature is, the lower residual compressive strength value is. At the same heating rate (10°C/min), the residual compressive strength of C45 concrete after water cooling is a little higher than that after air cooling; but the test results are just the opposite for C55 and C65 concrete. The strength deterioration speed of high-strength concrete after high temperature increases with the increase of heating rate, but not in proportion. And when the heating temperature rises up between 200°C and 500°C, heating rate has the most remarkable effect on the residual compressive strength of concrete. These test results provide scientific proofs for further evaluation and analysis of mechanical properties of reinforced-concrete after exposure to high temperatures.


2016 ◽  
Vol 848 ◽  
pp. 272-278 ◽  
Author(s):  
Sha Qiu ◽  
Yu Fei Tang ◽  
Kang Zhao

Porous Al2O3 ceramics were fabricated by directional freezing and low pressure drying with sucrose solution as the cryogenic medium. The pore structure of the porous ceramics was changed by annealing in the environment of higher than the glass transition temperature of sucrose solution after directional freezing because of changing the size and distribution of crystalline solid. The effects of the annealing time on the pore structure, open porosity and mechanical property of porous ceramics were investigated. The results showed that the pore size of porous ceramics increased substantially with the increase of annealing time. The open porosity of porous ceramics changed slightly with the increase of annealing time, while the compressive strength of porous ceramics showed a trend of decrease. The pore size range of porous Al2O3 ceramics fabricated is from 6.0μm to 110.2μm, the range of porosity was 40.35%-64.58%, the compressive strength range of porous Al2O3 ceramics was from 25.9MPa-126.6MPa. The porous Al2O3 ceramics with different pore structure can be obtained by changing the annealing time.


Sign in / Sign up

Export Citation Format

Share Document