Experimental, numerical and analytical studies of abrasive wear: correlation between wear mechanisms and friction coefficient

2005 ◽  
Vol 333 (11) ◽  
pp. 830-837 ◽  
Author(s):  
Salah Mezlini ◽  
M. Zidi ◽  
H. Arfa ◽  
Mohamed Ben Tkaya ◽  
Philippe Kapsa
2020 ◽  
Vol 993 ◽  
pp. 836-843
Author(s):  
Ke Guo ◽  
Zhi Qiang Zhang ◽  
Zhong Zheng Pei ◽  
Jie Xu ◽  
Yi Fan Feng

Here we developed a hot-pressed molded resin-based brake pad material reinforced by a nano sodium titanate whisker in comparison with nano potassium titanate whisker. The effect of the whiskers on the tribology behavior was investigated. Though nano sodium titanate whisker reinforced brake material showed higher porosity (+12.29% averagely) and lower hardness (-25.8% averagely) caused by the impurities, it exhibited improved ability in stabilizing the friction coefficient and enhancing 25.5%, 31.1%, 25.9% higher wear resistance, when the volume contents of whisker are 7.5%, 15% and 22.5%, respectively, compared to the nano potassium titanate whisker reinforced brake material. The wear mechanisms of the nano sodium titanate whisker reinforced brake materials were determined as embedded debris, delaminated crater, moderate layers transfer, uniform furrows, primary plateaus and secondary plateaus in similar size, indicating a main wear form of abrasive wear instead of adhesive wear.


2011 ◽  
Vol 311-313 ◽  
pp. 92-95 ◽  
Author(s):  
Kui Chen ◽  
Tian Yun Zhang ◽  
Wei Wei

Polypropylene/organo-montmorillonite (PP/OMMT) composites were investigated by XRD. Friction and wear behaviors of this composites sliding against GCr15 stainless steel were examined on M-2000 text rig in a ring-on-block configuration. Worn surfaces of PP and its composites were analyzed by SEM. The result shows that PP macromolecule chains have intercalated into OMMT layers and form intercalated nanocomposites. With the increase of mass fraction of OMMT, both wear rate and friction coefficient of composites first decrease then rise. With the increase of load, from 150 N, 200 N to 250 N, wear rate of composites increases, while friction coefficient reduces. The wear mechanisms of composites are connected with the content of OMMT. Composites were dominated by adhesive wear, abrasive wear and adhesive wear accompanied by abrasive wear respectively with the increase of OMMT content.


2019 ◽  
Vol 72 (3) ◽  
pp. 359-368
Author(s):  
Hulin Li ◽  
Zhongwei Yin ◽  
Yanzhen Wang

Purpose The purpose of this paper is to study the friction and wear properties of journal bearings under different working conditions. Design/methodology/approach Friction coefficient and wear losses of journal bearing under different working conditions have been determined by a bearing test rig. The worn surfaces of bearing were examined by scanning electron microscopy and laser three-dimensional micro-imaging profile measurements, and the tribological behavior and wear mechanisms were investigated. Findings The wear loss and friction coefficient of bearing under starting-stopping working condition is far greater than that of steady-state working conditions. In addition, the maximum wear loss under start-up and stop conditions is about 120 times of that under stable operating conditions. Under stable working conditions, the main wear forms of bearings are abrasive wear, under starting-stopping working conditions the main wear mechanisms of bearings are adhesion wear, abrasive wear and fatigue wear. Originality/value These research results have certain practical value for understanding the tribology behavior of journal bearings under different working conditions.


2019 ◽  
Vol 72 (1) ◽  
pp. 151-156
Author(s):  
Kemin Li ◽  
Zhifu Huang ◽  
Hanwen Ma ◽  
Shaofei Wang ◽  
Chaofeng Qin ◽  
...  

Purpose The purpose of this study was to investigate the tribological properties of bulk Fe2B with pre-oxidation treatment. Design/methodology/approach Bulk Fe2B was oxidized in an electric box furnace with a soaking time of 9 min under 750°C in air. Then, the tribological experiments were carried out on an UMT-Tribolab tester. Findings The oxide layer was composed of Fe, Fe2O3, Fe3O4, B2O3 and H3BO3. The oxidative direction of bulk Fe2B was perpendicular to the sample surface. But, the oxidative direction of Fe2B crystals was irregular. At 0.1 m/s, the friction coefficient was the lowest. The effects of shortening the running-in period of friction and reducing the friction coefficient by pre-oxidation treatment at 0.1 m/s were remarkable. Nevertheless, the effect of pre-oxidation treatment was futile at 0.2 m/s. Wear mechanisms of oxidized Fe2B mainly were adhesive and abrasive wear. Originality/value The effects of shortening the running-in period of friction and reducing the friction coefficient by pre-oxidation treatment were remarkable.


2021 ◽  
pp. 089270572110286
Author(s):  
Xinyue Zhang ◽  
Dekun Zhang ◽  
Kai Chen ◽  
Handong Xu ◽  
Cunao Feng

The complex movement of artificial joints is closely related to the wear mechanism of the prosthesis material, especially for the polymer prosthesis, which is sensitive to motion paths. In this paper, the “soft-soft” all-polymer of XLPE/PEEK are selected to study the influence of motion paths on the friction and wear performance. Based on the periodic characteristics of friction coefficient and wear morphology, this paper reveals the friction and wear mechanism of XLPE/peek under multi-directional motion path, and obtains the quantitative relationship between friction coefficient and the aspect ratios of “∞”-shape motion path, which is of great significance to reveal and analyze the wear mechanism of “soft” all-polymer under multi-directional motion path. The results show that the friction coefficient is affected by the motion paths and have periodicity. Morever, under the multi-directional motion paths, the wear of PEEK are mainly abrasive wear and adhesive wear due to the cross shear effect, while the wear of XLPE is mainly abrasive wear with plastic accumulation. In addition, the friction coefficient is greatly affected the aspect ratios Rs-l of “∞”-shape and loads. Meanwhile, the wear morphologies are greatly affected by the aspect ratios Rs-l of “∞”-shape, but less affected by loads.


Author(s):  
Raj Kumar Singh ◽  
Amit Telang ◽  
Satyabrata Das

Abstract The effects of friction heat and friction coefficient on the abrasive wear response of Al-7.5Si–SiCp composite against low-cost hypereutectic (Al-17.5Si) alloy were investigated as functions of the abrasive size and applied load in both as-cast and after heat-treatment conditions. Experiments were performed on pin-on-disc apparatus at 38 –80 μm abrasive size, 5 – 20 N applied load, 100 –400 m abrading (sliding) distances and 1 m s–1 constant sliding speed. The frictional heating of as-cast and heat-treated composite was superior compared to the matrix alloy and hypereutectic alloy, whereas the trend reversed for the friction coefficient. The frictional heating and friction coefficient of the materials increased with the abrasive size and applied load in both as-cast and after heat-treatment. The worn surface and wear debris particles were examined by using field emission scanning electron microscopy to understand the wear mechanism.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 180
Author(s):  
Donya Ahmadkhaniha ◽  
Lucia Lattanzi ◽  
Fabio Bonora ◽  
Annalisa Fortini ◽  
Mattia Merlin ◽  
...  

The purpose of the study is to assess the influence of SiC particles and heat treatment on the wear behaviour of Ni–P coatings when in contact with a 100Cr6 steel. Addition of reinforcing particles and heat treatment are two common methods to increase Ni–P hardness. Ball-on-disc wear tests coupled with SEM investigations were used to compare as-plated and heat-treated coatings, both pure and composite ones, and to evaluate the wear mechanisms. In the as-plated coatings, the presence of SiC particles determined higher friction coefficient and wear rate than the pure Ni–P coatings, despite the limited increase in hardness, of about 15%. The effect of SiC particles was shown in combination with heat treatment. The maximum hardness in pure Ni–P coating was achieved by heating at 400 °C for 1 h while for composite coatings heating for 2 h at 360 °C was sufficient to obtain the maximum hardness. The difference between the friction coefficient of composite and pure coatings was disclosed by heating at 300 °C for 2 h. In other cases, the coefficient of friction (COF) stabilised at similar values. The wear mechanisms involved were mainly abrasion and tribo-oxidation, with the formation of lubricant Fe oxides produced at the counterpart.


2014 ◽  
Vol 604 ◽  
pp. 47-50 ◽  
Author(s):  
Marcela Petrica ◽  
Thomas Peinsitt ◽  
Ewald Badisch

In industry, core components such as crushers, miner feeder devices and impact stone breakers are exposed to heavy wear which involves mechanisms such abrasive wear and / or impact abrasion. The purpose of this work is to identify complex wear mechanisms that occur in such conditions and to correlate them with the properties of typical abrasives found in mining environments.


2019 ◽  
Vol 823 ◽  
pp. 33-40 ◽  
Author(s):  
Yu Tong Hu ◽  
Yong Yong He ◽  
Wei Wang

Friction happens everywhere. Abrasives generated in tribological process will result in secondary wear. Abrasive wear is a kind of rather common but harmful wear, which is the main reason for the damage of fifty-percent mechanical components by friction. Surface texturing is an effective method to improve the tribological and lubricating performance of tribo-pairs. In this paper, with different-size diamond particles added into the lubricant and a surface of the tribo-pairs textured by different parameters (diameter and depth) with femtosecond laser, the relationship between the surface texture and the abrasive wear was researched, and the influence of the texture on the abrasive wear was analyzed. The friction experiments were carried out on UMT3. The microstructures were tested and analyzed by SEM, microscope and White Light Interferometer respectively. The experimental results showed that the size of the surface texture, compared with that of abrasives, is the main factor which determines the friction coefficient. As the size of the surface texture is much bigger than that of the abrasives, the texture can accommodate the abrasives efficiently, and thus the friction coefficient is reduced efficiently.


Wear ◽  
1996 ◽  
Vol 200 (1-2) ◽  
pp. 122-136 ◽  
Author(s):  
M.Q. Zhang ◽  
K. Friedrich ◽  
K. Batzar ◽  
P. Thomas

Sign in / Sign up

Export Citation Format

Share Document