Wastewater treatment and water reuse of food processing industries. Part II: Techno-economic study of a membrane separation technique

Desalination ◽  
2007 ◽  
Vol 214 (1-3) ◽  
pp. 261-272 ◽  
Author(s):  
Azza Hafez ◽  
Maaly Khedr ◽  
Hanaa Gadallah
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Ruan C. A. Moura ◽  
Daniel A. Bertuol ◽  
Carlos A. Ferreira ◽  
Franco D. R. Amado

The metal-finishing and tannery industries have been under strong pressure to replace their current wastewater treatment based on a physicochemical process. The electrodialysis process is becoming an interesting alternative for wastewater treatment. Electrodialysis is a membrane separation technique, in which ions are transported from one solution to another through ion-exchange membranes, using an electric field as the driving force. Blends of polystyrene and polyaniline were obtained in order to produce membranes for electrodialysis. The produced membranes were applied in the recovery of baths from the metal-finishing and tannery industries. The parameter for electrodialysis evaluation was the percentage of chromium extraction. The results obtained using these membranes were compared to those obtained with the commercial membrane Nafion 450.


2012 ◽  
Vol 66 (6) ◽  
pp. 1369-1376 ◽  
Author(s):  
H. Siegrist ◽  
A. Joss

A brief review of the fate of micropollutants in membrane-based wastewater treatment due to sorption, stripping, biological degradation/transformation and membrane separation is discussed, to give an overview of these technologies due to the growing importance for water reuse purposes. Compared with conventional activated sludge treatment (CAS) micropollutant removal in membrane bioreactor (MBR) is slightly improved due to complete suspended solids removal and increased sludge age. For discharge to sensitive receiving waters advanced treatment, such as post-ozonation or activated carbon adsorption, is recommended. In water reuse plants nanofiltration (NF) and reverse osmosis (RO) efficiently reject micropollutants due to size exclusions as well as electrostatic and hydrophobic effects reaching potable quality. To remove micropollutants fully, additionally post-ozone or the addition of powdered activated carbon (PAC) have to be applied, which in parallel also reduce NDMA precursors. The concentrate has to be treated if disposed to sensitive receiving waters due to its high micropollutant concentration and ecotoxicity potential. The present review summarizes principles and capabilities for the most important membrane-based applications for wastewater treatment, i.e. porous membranes in MBRs (micro- or ultrafiltration) and dense membrane applications (NF and RO) for water reuse.


2001 ◽  
Vol 1 (5-6) ◽  
pp. 315-323 ◽  
Author(s):  
K.-H. Ahn ◽  
K.-G. Song ◽  
I.-T. Yeom ◽  
K.-Y. Park

Two pilot-scale wastewater treatment systems - direct membrane separation (DMS) and membrane bioreactor (MBR) systems - were designed and constructed in order to investigate the feasibility of membrane filtration technology for domestic wastewater treatment and water reuse. A submerged-type hollow-fiber microfiltration (HF-MF) membrane module with pore size of 0.1μm was employed to build each pilot system. The systems were tested using low- and high-strength domestic wastewaters and the system performance was continuously monitored for a long period to compare filtration characteristics and effluent quality in each system. The MBR system showed much better performance than the DMS system in terms of filtration characteristics and effluent quality. Even though the mixed-liquor suspended solid (MLSS) content in the MBR system was much higher than that in the DMS system, the MBR filtration resistance was much lower than the DMS filtration resistance. The DMS system was not able to remove dissolved organic matter, which seemed to be a major component of membrane fouling. The MBR effluent quality such as COD, BOD, TOC and T-N was more stable and better than the DMS. In the MBR process, the organic removal efficiency remained more than 95% regardless of fluctuation in influent qualities. The effluent quality of both systems was satisfying the legal standards for water reuse in Korea. Rejection of pathogenic microorganisms by membrane filtration was also investigated.


1995 ◽  
Vol 30 (1) ◽  
pp. 111-114
Author(s):  
Duan ZhenBo ◽  
Wang Shang ShaoTang ◽  
Li RuQi ◽  
Wu XureQing ◽  
Gao Erjing

Abstract The use of renovated water from a rapid infiltration system for fish and duck farming was evaluated. It was concluded that the flesh of fish and duck was edible. The use of this approach is beneficial to the environment and economy, especially in developing countries. The production of fish and duck can offset the cost of wastewater treatment in many cases.


1997 ◽  
Vol 35 (6) ◽  
pp. 37-44 ◽  
Author(s):  
Boran Zhang ◽  
Kazuo Yamamoto ◽  
Shinichiro Ohgaki ◽  
Naoyuki Kamiko

Activated sludges taken from full-scale membrane separation processes, building wastewater reuse system (400m3/d), and two nightsoil treatment plants (50m3/d) as well as laboratory scale membrane separation bioreactor (0.062m3/d) were analyzed to characterize membrane separation activated sludge processes (MSAS). They were also compared with conventional activated sludges(CAS) taken from municipal wastewater treatment plants. Specific nitrification activity in MSAS processes averaged at 2.28gNH4-N/kgMLSS.h were higher than that in CAS processes averaged at 0.96gNH4-N/kgMLSS.h. The denitrification activity in both processes were in the range of 0.62-3.2gNO3-N/kgMLSS.h without organic addition and in the range of 4.25-6.4gNO3-N/kgMLSS.h with organic addition. The organic removal activity in nightsoil treatment process averaged at 123gCOD/kgMLSS.h which was significantly higher than others. Floc size distributions were measured by particle sedimentation technique and image analysis technique. Flocs in MSAS processes changed their sizes with MLSS concentration changes and were concentrated at small sizes at low MLSS concentration, mostly less than 60 μm. On the contrary, floc sizes in CAS processes have not much changed with MLSS concentration changes and they were distributed in large range. In addition, the effects of floc size on specific nitrification rate, denitrification rate with and without organic carbon addition were investigated. Specific nitrification rate was decreased as floc size increased. However, little effect of floc size on denitrification activity was observed.


2021 ◽  
pp. 127285
Author(s):  
Mariana A. Santos ◽  
Fabiano Capponi ◽  
Carlos H. Ataíde ◽  
Marcos A.S. Barrozo

Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1551 ◽  
Author(s):  
Antonio Jodar-Abellan ◽  
María Inmaculada López-Ortiz ◽  
Joaquín Melgarejo-Moreno

The issues of wastewater treatment and the reuse of water are of great importance, especially in areas where the shortage of conventional resources is a structural problem, as it is in the case of Spain. Wastewater reuse is a valid mechanism to avoid problems derived from droughts and water scarcity. It allows access to water resources in areas with water restrictions and to prevent futures scenarios, due to it being expected that water consumption will double by 2050 over the world. Thus, the likelihood that this unconventional, strategic resource would become scarce is unquestionable, particularly in cases where water planning and exploitation systems prioritize the preservation, protection, and improvement of water quality, as well as the sustainable and efficient use of natural resources. This paper shows how wastewater treatment and reuse are linked, as the reuse of wastewater is associated with a previous regeneration, and both of them are essential tools for maximizing environmental outcomes, as called for in the European Union Directives.


2020 ◽  
Vol 272 ◽  
pp. 111082
Author(s):  
Laís G.M. Silva ◽  
Francisca C. Moreira ◽  
Maria Alice P. Cechinel ◽  
Luciana P. Mazur ◽  
Antônio A. Ulson de Souza ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document