miR-197-5p increases Doxorubicin-mediated anticancer cytotoxicity of HT1080 fibrosarcoma cells by decreasing drug efflux

DNA Repair ◽  
2021 ◽  
pp. 103259
Author(s):  
Neha Jain ◽  
Basudeb Das ◽  
Bibekanand Mallick
2018 ◽  
Vol 25 (28) ◽  
pp. 3319-3332 ◽  
Author(s):  
Chuanmin Zhang ◽  
Shubiao Zhang ◽  
Defu Zhi ◽  
Jingnan Cui

There are several mechanisms by which cancer cells develop resistance to treatments, including increasing anti-apoptosis, increasing drug efflux, inducing angiogenesis, enhancing DNA repair and altering cell cycle checkpoints. The drugs are hard to reach curative effects due to these resistance mechanisms. It has been suggested that liposomes based co-delivery systems, which can deliver drugs and genes to the same tumor cells and exhibit synergistic anti-cancer effects, could be used to overcome the resistance of cancer cells. As the co-delivery systems could simultaneously block two or more pathways, this might promote the death of cancer cells by sensitizing cells to death stimuli. This article provides a brief review on the liposomes based co-delivery systems to overcome cancer resistance by the synergistic effects of drugs and genes. Particularly, the synergistic effects of combinatorial anticancer drugs and genes in various cancer models employing multifunctional liposomes based co-delivery systems have been discussed. This review also gives new insights into the challenges of liposomes based co-delivery systems in the field of cancer therapy, by which we hope to provide some suggestions on the development of liposomes based co-delivery systems.


2020 ◽  
Vol 27 (33) ◽  
pp. 5510-5529
Author(s):  
Zengtao Wang ◽  
Qingqing Meng ◽  
Shaoshun Li

Background: Multidrug Resistance (MDR) is defined as a cross-resistance of cancer cells to various chemotherapeutics and has been demonstrated to correlate with drug efflux pumps. Visualization of drug efflux pumps is useful to pre-select patients who may be insensitive to chemotherapy, thus preventing patients from unnecessary treatment. Near-Infrared (NIR) imaging is an attractive approach to monitoring MDR due to its low tissue autofluorescence and deep tissue penetration. Molecular NIR imaging of MDR cancers requires stable probes targeting biomarkers with high specificity and affinity. Objective: This article aims to provide a concise review of novel NIR probes and their applications in MDR cancer treatment. Results: Recently, extensive research has been performed to develop novel NIR probes and several strategies display great promise. These strategies include chemical conjugation between NIR dyes and ligands targeting MDR-associated biomarkers, native NIR dyes with inherent targeting ability, activatable NIR probes as well as NIR dyes loaded nanoparticles. Moreover, NIR probes have been widely employed for photothermal and photodynamic therapy in cancer treatment, which combine with other modalities to overcome MDR. With the rapid advancing of nanotechnology, various nanoparticles are incorporated with NIR dyes to provide multifunctional platforms for controlled drug delivery and combined therapy to combat MDR. The construction of these probes for MDR cancers targeted NIR imaging and phototherapy will be discussed. Multimodal nanoscale platform which integrates MDR monitoring and combined therapy will also be encompassed. Conclusion: We believe these NIR probes project a promising approach for diagnosis and therapy of MDR cancers, thus holding great potential to reach clinical settings in cancer treatment.


2020 ◽  
Vol 20 (8) ◽  
pp. 1017-1027
Author(s):  
Abdul M. Baig ◽  
Zohaib Rana ◽  
Mohammad M. Mannan ◽  
Areeba Khaleeq ◽  
Fizza Nazim ◽  
...  

Background: Targeting evolutionarily conserved proteins in malignant cells and the adapter proteins involved in signalling that generates from such proteins may play a cardinal role in the selection of anti-cancer drugs. Drugs targeting these proteins could be of importance in developing anti-cancer drugs. Objectives: We inferred that drugs like loperamide and promethazine that act as antagonists of proteins conserved in cancer cells like voltage-gated Calcium channels (Cav), Calmodulin (CaM) and drug efflux (ABCB1) pump may have the potential to be re-purposed as an anti-cancer agent in Prostate Cancer (PCa). Methods: Growth and cytotoxic assays were performed by selecting loperamide and promethazine to target Cav, CaM and drug efflux (ABCB1) pumps to elucidate their effects on androgen-independent PC3 and DU145 PCa cell lines. Results: We show that loperamide and promethazine in doses of 80-100μg/ml exert oncocidal effects when tested in DU145 and PC3 cell lines. Diphenhydramine, which shares its targets with promethazine, except the CaM, failed to exhibit oncocidal effects. Conclusion: Anti-cancer effects can be of significance if structural analogues of loperamide and promethazine that specifically target Cav, CaM and ABCB1 drug efflux pumps can be synthesized, or these two drugs could be re-purposed after human trials in PCa.


2018 ◽  
Vol 10 (1) ◽  
pp. 102
Author(s):  
Robby Hertanto ◽  
Wilson Bastian ◽  
Paramita . ◽  
Melva Louisa

Objective: The aim of the present study was to determine whether curcumin (CM) can prevent drug sensitivity of breast cancer (BC) cells when E andβ-E2 are administered together and whether the underlying mechanism involves modulation of drug efflux transporters.Methods: MCF7 BC cells were treated with the vehicle only, E+β-E2, or E+β-E2+CM repeatedly for 8 weeks. Afterward, the cells were harvested,counted, and isolated for total RNA extraction. Total RNA was then processed into cDNA and further processed for the determination of mRNAexpression patterns of drug efflux transporters (P-glycoprotein, BCRP, and MRP1).Results: Decreased sensitivity of BC cells was shown by the increased cell viability of MCF7 cells after 8 weeks. This condition was accompanied withincreased mRNA expression of P-glycoprotein, BCRP, and MRP1 in cells treated with E+β-E2, as compared with the vehicle only. CM, administered incombination with E+β-E2, resulted in decreased cell viability versus E and β-E2 and also decreased in mRNA expression of P-glycoprotein, BCRP, andMRP1.Conclusion: CM partially reversed the sensitivity loss of BC cells to E in the presence of β-E2 by modulating drug efflux transporters.


2014 ◽  
Vol 21 ◽  
pp. 92
Author(s):  
K. Ganguly ◽  
J.L. Phillips ◽  
M.S. Wren ◽  
P.E. Pardington ◽  
S. Gnanakaran ◽  
...  

1990 ◽  
Vol 61 (6) ◽  
pp. 813-820 ◽  
Author(s):  
F-G Hanisch ◽  
J Sölter ◽  
V Jansen ◽  
A Lochner ◽  
J Peter-Katalinic ◽  
...  
Keyword(s):  

2021 ◽  
Vol 42 (3) ◽  
pp. 212-223
Author(s):  
Hakki Gurhan ◽  
Rodolfo Bruzon ◽  
Sahithi Kandala ◽  
Ben Greenebaum ◽  
Frank Barnes

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryo Saga ◽  
Yusuke Matsuya ◽  
Rei Takahashi ◽  
Kazuki Hasegawa ◽  
Hiroyuki Date ◽  
...  

AbstractHyaluronan synthesis inhibitor 4-methylumbelliferone (4-MU) is a candidate of radiosensitizers which enables both anti-tumour and anti-metastasis effects in X-ray therapy. The curative effects under such 4-MU administration have been investigated in vitro; however, the radiosensitizing mechanisms remain unclear. Here, we investigated the radiosensitizing effects under 4-MU treatment from cell experiments and model estimations. We generated experimental surviving fractions of human fibrosarcoma cells (HT1080) after 4-MU treatment combined with X-ray irradiation. Meanwhilst, we also modelled the pharmacological effects of 4-MU treatment and theoretically analyzed the synergetic effects between 4-MU treatment and X-ray irradiation. The results show that the enhancement of cell killing by 4-MU treatment is the greatest in the intermediate dose range of around 4 Gy, which can be reproduced by considering intercellular communication (so called non-targeted effects) through the model analysis. As supposed to be the involvement of intercellular communication in radiosensitization, the oxidative stress level associated with reactive oxygen species (ROS), which leads to DNA damage induction, is significantly higher by the combination of 4-MU treatment and irradiation than only by X-ray irradiation, and the radiosensitization by 4-MU can be suppressed by the ROS inhibitors. These findings suggest that the synergetic effects between 4-MU treatment and irradiation are predominantly attributed to intercellular communication and provide more efficient tumour control than conventional X-ray therapy.


Sign in / Sign up

Export Citation Format

Share Document