Grain yield, dry matter accumulation and remobilization, and root respiration in winter wheat as affected by seeding rate and root pruning

2010 ◽  
Vol 33 (4) ◽  
pp. 257-266 ◽  
Author(s):  
Yan Fang ◽  
Bing-cheng Xu ◽  
Neil C. Turner ◽  
Feng-Min Li
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Xiu-Xiu Chen ◽  
Wei Zhang ◽  
Xiao-Yuan Liang ◽  
Yu-Min Liu ◽  
Shi-Jie Xu ◽  
...  

Abstract Although researchers have determined that attaining high grain yields of winter wheat depends on the spike number and the shoot biomass, a quantitative understanding of how phosphorus (P) nutrition affects spike formation, leaf expansion and photosynthesis is still lacking. A 3-year field experiment with wheat with six P application rates (0, 25, 50, 100, 200, and 400 kg P ha−1) was conducted to investigate this issue. Stem development and mortality, photosynthetic parameters, dry matter accumulation, and P concentration in whole shoots and in single tillers were studied at key growth stages for this purpose. The results indicated that spike number contributed the most to grain yield of all the yield components in a high-yielding (>8 t/ha) winter wheat system. The main stem (MS) contributed 79% to the spike number and tiller 1 (T1) contributed 21%. The 2.7 g kg−1 tiller P concentration associated with 15 mg kg−1 soil Olsen-P at anthesis stage led to the maximal rate of productive T1s (64%). The critical shoot P concentration that resulted in an adequate product of Pn and LAI was identified as 2.1 g kg−1. The thresholds of shoot P concentration that led to the maximum productive ability of T1 and optimal canopy photosynthetic capacity at anthesis were very similar. In conclusion, the thresholds of soil available P and shoot P concentration in whole plants and in single organs (individual tillers) were established for optimal spike formation, canopy photosynthetic capacity, and dry matter accumulation. These thresholds could be useful in achieving high grain yields while avoiding excessive P fertilization.


Author(s):  
Lijun Yin ◽  
Chengxiang Zhang ◽  
Kaizhen Liu ◽  
Xiaoyan Wang

Abstract Global warming increases the risk of pests and weeds before wintering, and decreases the grain yield of winter wheat. Therefore, the sowing date should be delayed properly. But the variety of winter wheat that can adapt to late sowing remains unclear. Here, we selected two winter wheat cultivars and evaluated four sowing date treatments on 1 October (early sowing), 8 (normal sowing), 15 (late sowing) and 22 (latest sowing) over two wheat-growing seasons at the experimental Station of Shandong Agricultural University (35°96′N, 117°06′E), Daiyue District, Taian, Shandong, China. We examined the effects of sowing date on a few traits, and found that, compared with normal sowing, though spike number decreased, grain yield was maintained above 9300 kg/ha under late and latest sowing. The main reason was that the more accumulated N from jointing to anthesis resulted in a higher grain number per spike. The higher net photosynthetic rate after anthesis, through optimizing N distribution in the canopy and increasing Rubisco content of flag leaves, improved dry matter accumulation rate and contribution ratio of vegetative organs, ultimately, ensured consistent grain weight. The grain yield of high-tillering winter wheat cultivars decreased from 9370 to 8346 kg/ha. The main reason was that spike number, accumulated N from jointing to anthesis and net photosynthetic rate decreased significantly, which reduced the dry matter accumulation rate, and only satisfied less grains to achieve consistent grain weight. Therefore, low-tillering winter wheat cultivars are more adaptable to late sowing, and can reduce the harm of global warming.


2016 ◽  
Vol 160 ◽  
pp. 73-81 ◽  
Author(s):  
Yu Shi ◽  
Zhenwen Yu ◽  
Jianguo Man ◽  
Shangyu Ma ◽  
Zhiqiang Gao ◽  
...  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11700
Author(s):  
Kaizhen Liu ◽  
Chengxiang Zhang ◽  
Beibei Guan ◽  
Rui Yang ◽  
Ke Liu ◽  
...  

Background Timely sowing is an important agronomic measure to ensure the normal germination, stable seedling establishment, and yield formation for winter wheat (Triticum aestivum L.). Delayed sowing frequently occurs in the current multi-cropping system and mechanized production of this crop. However, the ways in which different sowing dates affect yield and its potential mechanism is still unknown in the middle-lower Yangtze River Basin. We sought to provide a theoretical basis for these mechanisms to improve regional wheat production. Methods We investigated the wheat’s yield differences in a two-year field study under different sowing dates and took into account related growth characteristics including meteorological conditions, growth period, tillers, dry matter accumulation (DMA), and nitrogen accumulation (NA). We used the logistic curve model to simulate DMA and NA dynamics of single stem wheat under different sowing dates. We then analyzed and compared wheat accumulation for different sowing dates. Results Our results showed that grain yield declined by 0.97 ± 0.22% with each one-day change (either early or delayed) in sowing beyond the normal sowing date. The yield loss could be explained by the inhibition of crop growth, yield components, biomass and nitrogen (N) production. The negative effects of delayed sowing were caused by environmental limitations including adverse weather factors such as low temperature during vegetative growth, shortened duration of various phases of crop development, and increased temperature during the grain-filling period. The grain yield gap decreased between the late and normal sowing periods owing to a compensatory effect between the highest average rates (Vt) and the rapid accumulation period (T) of DMA and NA for single stem wheat. The grain yield was maintained at 6,000 kg ha−1 or more when the ratio of DMA at the mature-to-jointing stage (MD/JD) and the ratio of NA at the mature-to-jointing stage (MN/JN) was 4.06 (P < 0.01) and 2.49 (P < 0.05), respectively. The compensatory effect did not prevent the impact caused by delayed sowing, which caused biomass and N production to decrease. Physiological development reached a maximal accumulation rate (Tm) of NA earlier than DMA.


Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1077
Author(s):  
Ting Chen ◽  
Yonghe Zhu ◽  
Rui Dong ◽  
Minjian Ren ◽  
Jin He ◽  
...  

The relationship between the sowing patterns and yield performance is a valuable topic for food security. In this study, a novel belt uniform (BU) sowing pattern was reported, and a field experiment with four winter wheat cultivars was carried out over three consecutive growing seasons to compare the dry matter accumulation, harvest index (HI), grain yield and yield components under BU and line and dense (LD) sowing patterns [BU sowing with narrow (15 cm) spacing; BU sowing with wide (20 cm) spacing; LD sowing with wide (33.3 cm) row spacing; LD sowing with narrow (16.6 cm) row spacing]. Four cultivars produced a higher mean grain yield (GY), above-ground biomass (AGB) and spike number (SN) per m2 under the BU sowing patterns than the LD sowing patterns in all three growing seasons. However, yield stability under the BU sowing patterns did not increase with the improved grain yield. The HI did not change with sowing patterns, and the contribution of above-ground biomass to grain yield (84%) was more than 5-fold higher than that of HI (16%). Principal component and correlation analyses indicated that the grain yield was positively correlated with the aboveground biomass and SN, while the HI and 1000-grain weight were not correlated with grain yield. We concluded that (1) the novel BU sowing patterns achieved a higher yield potential in winter wheat but did not further improve yield stability; (2) increasing the dry matter accumulation without changing the HI drove improvements in the SN and grain number per spike, thus increasing grain yield.


Weed Science ◽  
1991 ◽  
Vol 39 (2) ◽  
pp. 154-158 ◽  
Author(s):  
R. S. Balyan ◽  
R. K. Malik ◽  
R. S. Panwar ◽  
S. Singh

Field experiments were conducted during the winters of 1986–87 and 1987–88 at Haryana Agricultural University, Hisar, India to classify the ability of winter wheat cultivars to compete with wild oat. Wild oat reduced winter wheat grain yield by 17 to 62% depending upon cultivar. WH-147 and HD-2285 were the most competitive cultivars. Winter wheat dry matter accumulation and grain yield were negatively correlated with wild oat dry matter. A high number of tillers, particularly in HD-2009, WH-291, and S-308, did not always translate into grain yield advantage in wild oat-infested plots. Wheat height and dry matter accumulation per unit area during early crop growth were better characters than number of tillers for predicting the competitive ability of wheat cultivars to wild oat.


1990 ◽  
Vol 70 (1) ◽  
pp. 51-60 ◽  
Author(s):  
D. T. GEHL ◽  
L. D. BAILEY ◽  
C. A. GRANT ◽  
J. M. SADLER

A 3-yr study was conducted on three Orthic Black Chernozemic soils to determine the effects of incremental N fertilization on grain yield and dry matter accumulation and distribution of six spring wheat (Triticum aestivum L.) cultivars. Urea (46–0–0) was sidebanded at seeding in 40 kg N ha−1 increments from 0 to 240 kg ha−1 in the first year and from 0 to 200 kg ha−1 in the 2 subsequent years. Nitrogen fertilization increased the grain and straw yields of all cultivars in each experiment. The predominant factor affecting the N response and harvest index of each cultivar was available moisture. At two of the three sites, 91% of the interexperiment variability in mean maximum grain yield was explained by variation in root zone moisture at seeding. Mean maximum total dry matter varied by less than 12% among cultivars, but mean maximum grain yield varied by more than 30%. Three semidwarf cultivars, HY 320, Marshall and Solar, had consistently higher grain yield and grain yield response to N than Glenlea and Katepwa, two standard height cultivars, and Len, a semidwarf. The mean maximum grain yield of HY 320 was the highest of the cultivars on test and those of Katepwa and Len the lowest. Len produced the least straw and total dry matter. The level of N fertilization at maximum grain yield varied among cultivars, sites and years. Marshall and Solar required the highest and Len the lowest N rates to achieve maximum grain yield. The year-to-year variation in rates of N fertilization needed to produce maximum grain yield on a specific soil type revealed the limitations of N fertility recommendations based on "average" amounts and temporal distribution of available moisture.Key words: Wheat (spring), N response, standard height, semidwarf, grain yield


Sign in / Sign up

Export Citation Format

Share Document