Fracture of brittle solid material containing a single internal crack of different depths under three-point bending based on 3D-ILC

2021 ◽  
Vol 248 ◽  
pp. 107673
Author(s):  
Hanzhang Li ◽  
Haijun Wang ◽  
Lei Tang ◽  
Xuhua Ren ◽  
Yuebo Cai

A considerable amount of research has been done recently on the mechanism by which grains of sand, etc., may be picked up by a river or by a gale of wind and carried to some distance. In particular Jeffreys (1929) has considered the theoretical aspects of the action while the writer (1934) and Bagnold (1936) have published experimental data on the action by which the grains are picked up in water and air respectively. Another problem of considerable practical importance is th a t of the quantity—or, more strictly, the time average of the quantity—of solid material carried at different levels above the bed or ground. Up to the present, data on this question have all been collected in relation to a special case, i. e. that in which the particles have the same size and density. Thus, Hurst (1929) collected samples of uniformly graded sand at different depths in a turbo-cylinder containing a vigorously stirred mixture of sieved sand in water, and showed that, in the body of the cylinder, an exponential relation between “weight” of sample and height above the bottom of the vessel existed. The present paper is mainly concerned with measurements of the concentration of the suspended material near the uniformly graded bed of an artificial channel and the application of these results to the conditions in a natural stream.


2021 ◽  
Vol 18 (175) ◽  
pp. 20201023
Author(s):  
Timothy Hone ◽  
Max Mylo ◽  
Olga Speck ◽  
Thomas Speck ◽  
David Taylor

In the course of biological evolution, plant stems have evolved mechanical properties and an internal structure that makes them resistant to various types of failure. The mechanisms involved during damage development and failure in bending are complex and incompletely understood. The work presented builds on a theoretical framework outlined by Ennos and van Casteren, who applied engineering mechanics theory to explain why different woody stems fail in different ways. Our work has extended this approach, applying it to a detailed analysis of one particular species: Fuchsia magellanica var. gracilis . When subjected to three-point bending, stems of this species exhibited one of two failure mechanisms: a plastic hinge or a greenstick fracture. We developed a predictive model using a computer simulation and a mathematical analysis using the theory of plastic bending. Required material properties were obtained from tests, the literature and imaging techniques. We found that greenstick fractures are more likely to occur in more lignified stems with a higher density. We discovered a new failure mode: an internal crack caused by tensile transverse stress. This work helps in understanding how plants have evolved their bending resistance and may assist in the creation of novel engineering structures inspired by these principles.


2020 ◽  
Vol 323 ◽  
pp. 01001 ◽  
Author(s):  
David Lehký ◽  
Hana Šimonová ◽  
Barbara Kucharczyková ◽  
Petr Daněk

The aim of the current research is to develop a complex multilevel approach for the experimental–computational determination of mechanical fracture parameters of concrete as a typical quasi-brittle material. This includes testing, advanced evaluation and soft computing-based identification of specimens of multiple sizes in multiple test configurations and analyses of fracture processes using multiscale modelling approaches. The evaluation of a part of an extensive experimental program is presented in this paper. The basic mechanical fracture parameters of the investigated concrete determined on standard test specimens with nominal dimensions of 100 × 100 × 400 mm subjected to the standard three-point bending fracture test are introduced. The results of three different sets of specimens provided with different depths of the initial notch are compared in terms of absolute values of the selected mechanical fracture parameters. The results indicate different sensitivity of particular mechanical fracture parameters in relation to the depth of the initial notch.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Zhengjun Huang ◽  
Ying Zhang ◽  
Yuan Li ◽  
Dong Zhang ◽  
Tong Yang ◽  
...  

To accurately obtain the tensile strength of rock and fully understand the evolution process of rock failure is one of the key issues to the research of rock mechanics theories and rock mass engineering applications. Using direct tensile, Brazilian splitting, and three-point bending test methods, we performed indoor and numerical simulation experiments on marble, granite, and diabase and investigated the tensile strength and damage evolution process of several typical rocks in the three different tests. Our experiments demonstrate that (1) the strength is about 10% greater in the Brazilian splitting than in the direct tensile, while the tensile modulus is lower; it is the highest in the three-point bending, which is actually subjected to the bending moment and suggested as one of the indexes to evaluate the tensile strength of rock; (2) the strength in splitting tests is strikingly different, while the strain law is basically similar; the direct tensile test with precut slits is more attainable than that with no-cut slits, with an uninfluenced strength; (3) the failure modes of rocks using different methods are featured by different lithology, while their final modes are basically the same under the same method; (4) PFC and RFPA numerical simulation tests are effective to analyze the internal crack multiplication and acoustic emission changes in the rock as well as the damage evolution process of rock in different tests.


Author(s):  
P.G. Pawar ◽  
P. Duhamel ◽  
G.W. Monk

A beam of ions of mass greater than a few atomic mass units and with sufficient energy can remove atoms from the surface of a solid material at a useful rate. A system used to achieve this purpose under controlled atmospheres is called an ion miliing machine. An ion milling apparatus presently available as IMMI-III with a IMMIAC was used in this investigation. Unless otherwise stated, all the micro milling operations were done with Ar+ at 6kv using a beam current of 100 μA for each of the two guns, with a specimen tilt of 15° from the horizontal plane.It is fairly well established that ion bombardment of the surface of homogeneous materials can produce surface topography which resembles geological erosional features.


Author(s):  
J. R. Sellar ◽  
J. M. Cowley

Current interest in high voltage electron microscopy, especially in the scanning mode, has prompted the development of a method for determining the contrast and resolution of images of specimens in controlled-atmosphere stages or open to the air, hydrated biological specimens being a good example. Such a method would be of use in the prediction of microscope performance and in the subsequent optimization of environmental cell design for given circumstances of accelerating voltage, cell gas pressure and constitution, and desired resolution.Fig. 1 depicts the alfresco cell of a focussed scanning transmission microscope with a layer of gas L (and possibly a thin window W) between the objective O and specimen T. Using the principle of reciprocity, it may be considered optically equivalent to a conventional transmission electron microscope, if the beams were reversed. The layer of gas or solid material after the specimen in the STEM or before the specimen in TEM has no great effect on resolution or contrast and so is ignored here.


Author(s):  
M.V. Parthasarathy ◽  
C. Daugherty

The versatility of Low Temperature Field Emission SEM (LTFESEM) for viewing frozen-hydrated biological specimens, and the high resolutions that can be obtained with such instruments have been well documented. Studies done with LTFESEM have been usually limited to the viewing of small organisms, organs, cells, and organelles, or viewing such specimens after fracturing them.We use a Hitachi 4500 FESEM equipped with a recently developed BAL-TEC SCE 020 cryopreparation/transfer device for our LTFESEM studies. The SCE 020 is similar in design to the older SCU 020 except that instead of having a dedicated stage, the SCE 020 has a detachable cold stage that mounts on to the FESEM stage when needed. Since the SCE 020 has a precisely controlled lock manipulator for transferring the specimen table from the cryopreparation chamber to the cold stage in the FESEM, and also has a motor driven microtome for precise control of specimen fracture, we have explored the feasibility of using the LTFESEM for multiple-fracture studies of the same sample.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (2) ◽  
pp. 101-108
Author(s):  
Daniel Varney ◽  
Douglas Bousfield

Cracking at the fold is a serious issue for many grades of coated paper and coated board. Some recent work has suggested methods to minimize this problem by using two or more coating layers of different properties. A discrete element method (DEM) has been used to model deformation events for single layer coating systems such as in-plain and out-of-plain tension, three-point bending, and a novel moving force picking simulation, but nothing has been reported related to multiple coating layers. In this paper, a DEM model has been expanded to predict the three-point bending response of a two-layer system. The main factors evaluated include the use of different binder systems in each layer and the ratio of the bottom and top layer weights. As in the past, the properties of the binder and the binder concentration are input parameters. The model can predict crack formation that is a function of these two sets of factors. In addition, the model can predict the flexural modulus, the maximum flexural stress, and the strain-at-failure. The predictions are qualitatively compared with experimental results reported in the literature.


2018 ◽  
pp. 156-161
Author(s):  
Alexei K. Solovyov

Underground spaces in town centres present a big attraction for investors. However, they put special requirements to the internal environment. Those requirements can be fulfilled by means of daylighting. Examples of lighting of underground spaces are discussed. It is shown that the common systems of natural lighting are not always possible to use and cause big heat losses. Hollow light guide pipes allow avoid the shortcomings of common daylight systems. Method of calculation of daylight factors from hollow light guide pipes is shown. The results of calculation of daylight factors under the light guide pipes of different diameters in the different depths are presented.


Author(s):  
Sima Ajdar qizi Askerova

Monitoring of sea water condition is one of major requirements for carrying out the reliable ecological control of water environment. Monitoring networks contain such elements as sea buoys, beacons, etc. and are designated for measuringvarious hydrophysical parameters, including salinity of sea water. Development of specialized network and a separate buoy system for measuring thesea water salinity at different depths makes it possible to determine major regularities of processes of pollution and self-recovery of the sea waters. The article describes the scientific and methodological basics for development of this specialized network and questions of its optimal construction. It is well-known that at a depth of 30-45 m of the Caspian Sea salinity decreases and then at a depth of 45-60 m salinity is fully recovered. The mentioned changes of salinity at the relatively upper layer of sea waters is of special interest for studying the effect of ocean-going processes on the climate forming in the Caspian area. In terms of informativeness of measurements of surface waters salinity, the most informative is a layer ata 30-60 m depth, where inversion and recovery of salinity take place. It is shown that in most informative subrange of measurements, i. e. at a depth of 30-60 m optimization of regime of measurements complex should be carried out in order to increase the effectiveness of held researches. It is shown that at a depth of 35-50 m choice of the optimum regime of measurements makes it possible to obtain the maximum amount of information.


Sign in / Sign up

Export Citation Format

Share Document