Study on the bearing resistance of axially compressed L-shaped stainless steel core plate wall based on the stability loss

2021 ◽  
Vol 249 ◽  
pp. 113264
Author(s):  
Xing-Ping Shu ◽  
Huai-Bing Wang ◽  
Yi Li ◽  
Zhi-Shen Yuan ◽  
Ke Li
Author(s):  
Nasreen Iqbal Nagani

Background: Retention is an integral phase in which teeth are maintained in their newly adapted position for which retainers are inserted. Retainers are generally of two types: removable and fixed. Fixed retainers are indicated in the mandibular arch for an indefinite period specifically in the non-extraction cases. Changes in intercanine and intermolar widths are valuable parameters to evaluate the stability. The objectives of this study were to assess and compare the mandibular intercanine and intermolar width changes following orthodontic treatment after insertion of two types of fixed lingual retainers for one year. Methods: Total 54 subjects were recruited in which two types of fixed lingual retainers were inserted in the mandibular arch randomly. Intercanine and intermolar arch widths were measured by digital caliper of 0.01 mm accuracy. Data was analyzed by using Statistical Package of Social Sciences (SPSS V-21). Chi-square and independent t tests were used to compare baseline characteristics. Intercanine and intermolar widths were assessed and compared using independent t test, p-value ≤ 0.05 is considered as statistically significant. Results: Intercanine width increased from baseline to T4 in both retainers. When mean differences of intercanine width were compared between two retainers significant differences were observed at T1, T2, T3 and T4 with significant p-values (< 0.05) and increased intercanine width with multistranded stainless steel wire (MSW) retainers. Conclusion: Mandibular intercanine width increases significantly in post retention phase with multistranded stainless steel retainers. Thus, fiber reinforced composite retainers are more effective in preserving the arch width changes.


Author(s):  
Rafael dos Santos Pereira ◽  
Roosevelt Droppa ◽  
Mara Cristina Lopes de Oliveira ◽  
Renato Altobelli Antunes

2004 ◽  
Vol 182 (4) ◽  
pp. 1075-1080 ◽  
Author(s):  
Xiaoming Chen ◽  
Constance D. Lehman ◽  
Katherine E. Dee

2019 ◽  
Vol 13 (3) ◽  
pp. 44-49
Author(s):  
A.A. SHKURUPIY ◽  
A.N. PASCHENKO ◽  
P.B. MYTROFANOV

The paper presents an algorithm for calculating the stability of the form of equilibrium of the first kind of compressed discrete systems by the method of displacements in combination with themethods of iterations and bisection. The use of the displacement method in combination with the iteration and bisection methods makes it possible to effectively determine the minimum critical stress or strain at the first bifurcation and their corresponding form of loss of stability, both for statically determined and statically undetectable systems. This approach, using matrixforms, makes it possible to significantly simplify the calculations of the analytical condition for the loss of stability of compressed discrete systems (the stability loss equation), which has high orders, as well as to construct the form of loss of stability corresponding to a critical load, that is, to solve the problem of loss of stability of equilibrium. The calculation of the compressed discrete system on the stability of the form of equilibrium actually reduces to the solution of the difficultly described nonlinear transcendental equation, which is the equation of loss of stability. The difficulty lies in the absence of an analytical solution of such an equation due to the presence of complex functions of Zhukovsky, which have transcendental functions in their structure. Such solution can be performed only with the use of numerical methods. This algorithm for calculating the loss of equilibrium of the first kind of compressed discrete systems by displacement in combination with the methods of iteration and bisection is implemented in the software complex "Persist" for a PC in Windows OS. The program was approbated and implemented in theeducational process at the Department of Structural and Theoretical Mechanics of the Poltava National Technical Yuri Kondratyuk University during the training of specialists in engineering specialties.


2018 ◽  
Vol 66 ◽  
pp. 03001 ◽  
Author(s):  
Volodymyr Bondarenko ◽  
Iryna Kovalevska ◽  
Hennadii Symanovych ◽  
Mykhailo Barabash ◽  
Vasyl Snihur

The aim of the forecasting effort is to identify troublesome zones of stability loss by a parting lengthwise of the extraction panel under the joint and downward mining of coal seams. Analyses have been carried out of active stress component curves for a 3-D model computational experiment compared with the strength characteristic of each lithotype of a parting. An algorithm has been developed for the stability assessment of a parting lengthwise along the extraction panel. The relationship patterns have been estimated between the sizes of the parting rocks discontinuity zones and the main geomechanical parameters. A scientifically grounded basis has been created for the detection of the parting rock weak zones lengthwise along the extraction panel for the calculation of the mounting and security systems of the development works. A complex of underground instrumental observations was made, which was used to set up a correspondence of patterns to indicate the variation in rock pressure manifestation intensity and the tendencies for changes in the parting structure. All of this confirms the adequacy of the techniques for parting state forecasting, which is recommended for use in the engineering documentation for the joint and downward mining of coal seams.


Processes ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 487 ◽  
Author(s):  
Jianli Li ◽  
Qiqiang Mou ◽  
Qiang Zeng ◽  
Yue Yu

The stability of chromium in stainless steel slag has a positive correlation with spinel particle size and a negative correlation with the calcium content of the spinel. The effect of heating time on the precipitation of spinel crystals in the CaO-SiO2-MgO-Al2O3-Cr2O3-FeO system was investigated in the laboratory. Scanning electron microscopy with energy-dispersive and X-ray diffraction were adopted to observe the microstructure, test the chemical composition, and determine the mineral phases of synthetic slags, and FactSage7.1 was applied to calculate the crystallization process of the molten slag. The results showed that the particle size of the spinel crystals increased from 9.42 to 10.73 μm, the calcium content in the spinel crystals decreased from 1.38 at% to 0.78 at%, and the content of chromium in the spinel crystal increased from 16.55 at% to 22.78 at% with an increase in the heating time from 0 min to 120 min at 1450 °C. Furthermore, the species of spinel minerals remained constant. Therefore, an extension in the heating time is beneficial for improving the stability of chromium in stainless steel slag.


Author(s):  
Jirˇi´ Na´prstek

Slender structures exposed to a cross air flow are prone to vibrations of several types resulting from aeroelastic interaction of a flowing medium and a moving structure. Aeroelastic forces are the origin of nonconservative and gyroscopic forces influencing the stability of a system response. Conditions of a dynamic stability loss and a detailed analysis of a stability domain has been done using a linear mathematical model. Response properties of a system located on a stability boundary together with tendencies in its neighborhood are presented and interpreted from physical point of view. Results can be used for an explanation of several effects observed experimentally but remaining without theoretical explanation until now.


2019 ◽  
Vol 974 ◽  
pp. 551-555 ◽  
Author(s):  
I.M. Zotov ◽  
Anastasia P. Lapina ◽  
Anton S. Chepurnenko ◽  
B.M. Yazyev

The article presents the derivation of the resolving equation for the calculation of lateral buckling of rectangular beams. When deriving the basic equation, the initial imperfections of the beam are taken into account, which are specified in the form of the eccentricity of the applied load, the initial deflection in the plane of least stiffness and the initial twist angle. The influence of initial imperfections on the process of beam stability loss is investigated.


Sign in / Sign up

Export Citation Format

Share Document