Adaptive longitudinal growth of first-order lateral roots of a woody species (Spartium junceum) to slope and different soil conditions—upward growth of surface roots

2008 ◽  
Vol 63 (1-3) ◽  
pp. 207-215 ◽  
Author(s):  
Antonino Di Iorio ◽  
Bruno Lasserre ◽  
Livio Petrozzi ◽  
Gabriella S. Scippa ◽  
Donato Chiatante
1975 ◽  
Vol 5 (1) ◽  
pp. 109-121 ◽  
Author(s):  
D. C. F. Fayle

Extension of the root system and stem during the first 30 years of growth of plantation-grown red pine (Pinusresinosa Ait.) on four sites was deduced by root and stem analyses. Maximum rooting depth was reached in the first decade and maximum horizontal extension of roots was virtually complete between years 15 and 20. The main horizontal roots of red pine seldom exceed 11 m in length. Elongation of vertical and horizontal roots was examined in relation to moisture availability and some physical soil conditions. The changing relations within the tree in lineal dimensions and annual elongation of the roots and stem are illustrated. The development of intertree competition above and below ground is considered.


Weed Science ◽  
1975 ◽  
Vol 23 (5) ◽  
pp. 364-368 ◽  
Author(s):  
P. L. Orwick ◽  
M. M. Schreiber

We studied the early root growth of fourSetariataxa: giant foxtail (Setaria faberiHerrm.), giant green foxtail [Setaria viridisvar.major(Gaud.) Posp.], robust white foxtail (Setaria viridisvar.robusta-albaSchreiber), robust purple foxtail (Setaria viridisvar.robusta-purpureaSchreiber). Growth studies in controlled environments showed significant differences in root elongation among the taxa at three photoperiods. Seminal root lengths after 4 days followed the order presented for selectivity and metabolism of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] and propazine [2-chloro-4,6-bis(isopropylamino)-s-triazine] (robust white foxtail > giant green foxtail = robust purple foxtail > giant foxtail). Giant foxtail had the greatest root diameter, resulting in the greatest surface area and volume when lengths were equated. The order of seminal root lengths or diameters changed little after 7 days. Robust white foxtail had the most and longest first order lateral roots. Diameter of first order laterals showed giant foxtail > giant green foxtail = robust purple foxtail > robust white foxtail.


2019 ◽  
Vol 48 (No. 12) ◽  
pp. 549-564 ◽  
Author(s):  
J. Kodrík ◽  
M. Kodrík

Beech is, thanks to its root system, in general considered to be a wind-resistant woody plant species. Nevertheless, the research on beech root systems has revealed that it is not possible to mechanically divide the woody plants into deep rooted and shallow rooted, because their root systems are modified according to various stand conditions. The root system shape, growth and development are mostly influenced by soil conditions and groundwater level. In the case of a high groundwater level beech root systems do not form tap roots and the lateral roots are rather thin and weak. Important factor for the tree static stability is number of roots with diameter 3–10 cm. The most important for the tree stability are roots with diameter over 10 cm. Wood-destroying fungi have strong negative impact on tree static stability. There are differences between beech below-ground biomass growing in soils rich in nutrients and poor in nutrients. The total below-ground biomass of the beech stands poor in nutrients is higher.


Author(s):  
Robertas Ursache ◽  
Cristovao De Jesus Vieira-Teixeira ◽  
Valérie Dénervaud Tendon ◽  
Kay Gully ◽  
Damien De Bellis ◽  
...  

ABSTRACTRoots anchor plants and deliver water and nutrients from the soil. The root endodermis provides the crucial extracellular diffusion barrier by setting up a supracellular network of lignified cell walls, called Casparian strips, supported by a subsequent formation of suberin lamellae. Whereas lignification is thought to be irreversible, formation of suberin lamellae was demonstrated to be dynamic, facilitating adaptation to different soil conditions. Plants shape their root system through the regulated formation of lateral roots emerging from within the endodermis, requiring local breaking and re-sealing of the endodermal diffusion barriers. Here, we show that differentiated endodermal cells have a distinct auxin-mediated transcriptional response that regulates cell wall remodelling. Based on this data set we identify a set of GDSL-lipases that are essential for suberin formation. Moreover, we find that another set of GDSL-lipases mediates suberin degradation, which enables the developmental plasticity of the endodermis required for normal lateral root emergence.


1990 ◽  
Vol 20 (11) ◽  
pp. 1746-1752 ◽  
Author(s):  
J. Thomson ◽  
U. Matthes-Sears ◽  
R. L. Peterson

The effects of both seed source and fungal species on the formation of beads in roots of Piceamariana (Mill.) B.S.P. were examined. Seed was collected from two sites near Chapleau, Ontario. One provenance was an upland site with sandy soil, the second a lowland site with peaty soil. Seedlings were grown under aseptic conditions in test tubes and inoculated with either Laccariabicolor (Maire), Laccarialaccata (Scop, ex Fr.), Laccariaproximo (Boud.) Pat., or agar plugs. Each constriction or striation on the root was counted as a single bead. These constricted regions were associated with the accumulation of a darkly stained substance and the absence of a Hartig net. Bead formation on first order lateral roots from each treatment was assessed and the data were analyzed for significance with a two-way factorial ANOVA. There was a significant interaction between seed source and fungal species on the numbers of beads formed. Bead formation was significantly more common on the lowland seed source in the L. laccata treatment only. L. laccata inoculation resulted in the greatest number of beads on first order lateral roots followed by control and L. proximo treatments. Colonization of seedlings with L. bicolor resulted in the formation of significantly fewer beads than in the control or any other treatment.


1988 ◽  
Vol 18 (11) ◽  
pp. 1376-1385 ◽  
Author(s):  
William C. Carlson ◽  
Constance A. Harrington ◽  
Peter Farnum ◽  
Stephen W. Hallgren

Six-year-old loblolly pine seedlings were subjected to root severing treatments varying from 0 to 100% of first-order lateral roots. Separate treatments severed surface-oriented or deep-oriented roots. Plant water status was monitored periodically for several months. After all measurements were taken, gross root system structure was determined by excavation. Treatment responses were evident on all dates of measurement. Relationships between percentage of root system cut and leaf conductance or water potential were stronger when surface-oriented roots were cut than when deep-oriented roots were cut. Severing surface-oriented first-order lateral (SOFOL) roots probably resulted in greater impact on plant water status than severing deep-oriented first-order lateral (DOFOL) roots because (i) SOFOL roots had both surface-oriented and deep-oriented second-order lateral roots that could tap both surface and subsurface soil horizons for soil moisture, and (ii) the deep-oriented second-order roots (originating from the SOFOL roots) were spatially distributed over a much larger area than the DOFOL roots and thus would have access to soil water in a larger volume of soil. For SOFOL roots the relationship between percentage cut and leaf conductance or transpiration was strongly negative; for DOFOL roots, no relationship between these variables was observed. Initially water potential decreased with the percentage of roots cut in both groups; in later measurements, water potential was affected more by severing SOFOL than DOFOL roots. Calculation of soil moisture depletion by depth indicated that both surface- and deep-oriented second-order lateral roots were important for water uptake. Severing SOFOL roots significantly decreased nitrogen, phosphorus, and potassium levels in needles of the first growth flush of the year. Levels of these elements in terminal buds were not affected by severing SOFOL roots, but were significantly reduced by severing DOFOL roots. Secondary xylem production was reduced proportionately to the amount of root system cross-sectional area severed.


1990 ◽  
Vol 8 (4) ◽  
pp. 215-220 ◽  
Author(s):  
Edward F. Gilman

Abstract Root form is governed by seedling genetics and soil characteristics including texture, compaction, depth to the water table, fertility, moisture content and other factors. Trees develop lateral roots growing parallel to the surface of the soil. These are generally located in the top 30 cm (12 in) of soil. Fine roots emerge from lateral roots and grow into the soil close to the surface. If soil conditions permit, some trees grow tap and other vertically oriented roots capable of penetrating several feet into the soil. Many trees, particularly those planted in urban landscapes, do not generate tap roots. Lateral roots spread to well beyond the edge of the branches. Their growth in governed by competition from other plants, available water, soil temperature, fertility, stage of shoot growth and other factors.


2020 ◽  
Author(s):  
Katherine Pinto/Irish ◽  
Teodoro Coba de la Pena ◽  
Enrique Ostria-Gallardo ◽  
Cristian Ibanez ◽  
Vilbett Briones ◽  
...  

Abstract Background: Early seed germination and a functional root system development during establishment are crucial attributes contributing to nutrient competence under marginal nutrient soil conditions. Chenopodium quinoa Willd (Chenopodiaceae) is a rustic crop, able to grow in marginal areas. Altiplano and Coastal/Lowlands are two representative zones of quinoa cultivation in South America with contrasting soil fertility and edaphoclimatic conditions.In the present work, we hypothesize that the ecotypes of Quinoa from Altiplano (landrace Socaire) and from Coastal/Lowland (landrace Faro) have developed differential adaptive responses in order to survive under conditions of low availability of N in their respective climatic zones of Altiplano and Lowlands. In order to understand intrinsic differences for N competence between landraces, seed metabolite profile and germinative capacity were studied. Additionally, in order to elucidate the mechanisms of N uptake and assimilation at limiting N conditions during establishment, germinated seeds of both landraces were grown at either sufficient nitrate (HN) or low nitrate (LN) supply. We studied the photosynthetic performance, protein storage, root morphometrical parameters, activity and expression of N-assimilating enzymes, and the expression of nitrate transporters of roots in plants submitted to the different treatments.Results: Seeds from Socaire landrace presented higher content of free N-related metabolites and faster seed germination rate compared to Faro landrace. Seedlings of both ecotypes presented similar physiological performance at HN supply, but at LN supply their differences were exalted. At LN, Socaire plants showed an increased root biomass (including a higher number and total length of lateral roots), a differential regulation of a nitrate transporter (a NPF6.3-like homologue) belonging to the Low Affinity Transport System (LATS), and an upregulation of a nitrate transporter (a NRT2.1-like homologue) belonging to the High Affinity nitrate Transport System (HATS) compared to Faro. These responses as a whole could be linked to a higher amount of stored proteins in leaves, associated to an enhanced photochemical performance in Altiplano plants, in comparison to Lowland quinoa plants. Conclusions: These differential characteristics of Socaire over Faro plants could involve an adaptation to enhanced nitrate uptake under the brutal unfavorable climate conditions of Altiplano.


Sign in / Sign up

Export Citation Format

Share Document