scholarly journals Spatiotemporal trends and annual fluxes of pharmaceuticals in a Scottish priority catchment

2022 ◽  
Vol 292 ◽  
pp. 118295
Author(s):  
Lydia Niemi ◽  
Pavlína Landová ◽  
Mark Taggart ◽  
Kenneth Boyd ◽  
Zulin Zhang ◽  
...  
2021 ◽  
Vol 13 (12) ◽  
pp. 2358
Author(s):  
Linjing Qiu ◽  
Yiping Wu ◽  
Zhaoyang Shi ◽  
Yuting Chen ◽  
Fubo Zhao

Quantitatively identifying the influences of vegetation restoration (VR) on water resources is crucial to ecological planning. Although vegetation coverage has improved on the Loess Plateau (LP) of China since the implementation of VR policy, the way vegetation dynamics influences regional evapotranspiration (ET) remains controversial. In this study, we first investigate long-term spatiotemporal trends of total ET (TET) components, including ground evaporation (GE) and canopy ET (CET, sum of canopy interception and canopy transpiration) based on the GLEAM-ET dataset. The ET changes are attributed to VR on the LP from 2000 to 2015 and these results are quantitatively evaluated here using the Community Land Model (CLM). Finally, the relative contributions of VR and climate change to ET are identified by combining climate scenarios and VR scenarios. The results show that the positive effect of VR on CET is offset by the negative effect of VR on GE, which results in a weak variation in TET at an annual scale and an increased TET is only shown in summer. Regardless of the representative concentration pathway (RCP4.5 or RCP8.5), differences resulted from the responses of TET to different vegetation conditions ranging from −3.7 to −1.2 mm, while climate change from RCP4.5 to RCP8.5 caused an increase in TET ranging from 0.1 to 65.3 mm. These findings imply that climate change might play a dominant role in ET variability on the LP, and this work emphasizes the importance of comprehensively considering the interactions among climate factors to assess the relative contributions of VR and climate change to ET.


2015 ◽  
Vol 35 ◽  
pp. 147-154 ◽  
Author(s):  
Corinne N. Thompson ◽  
Jonathan L. Zelner ◽  
Tran Do Hoang Nhu ◽  
My VT Phan ◽  
Phuc Hoang Le ◽  
...  

2021 ◽  
Vol 4 ◽  
Author(s):  
Bruno Montibeller ◽  
Jaak Jaagus ◽  
Ülo Mander ◽  
Evelyn Uuemaa

Shifts in climate driven by anthropogenic land use and land cover change are expected to alter various land–atmosphere interactions. Evapotranspiration (ET) is one of these processes and plays a fundamental role in the hydrologic cycle. Using gridded reanalysis and remote sensing data, we investigated the spatiotemporal trends of precipitation, temperature, and ET for areas in the Baltic countries Lithuania, Latvia and Estonia where the land cover type had not changed from 2000 to 2018. We focused on ET but investigated the spatiotemporal trends for the three variables at monthly, seasonal, and annual time scales during this period to quantify trade-offs among months and seasons. We used the Mann-Kendall test and Sen’s slope to calculate the trends and rate of change for the three variables. Although precipitation showed fewer statistically significant increasing and decreasing trends due to its high variability, temperature showed only increasing trends. The trends were concentrated in late spring (May, +0.14°C annually), summer (June and August, +0.10°C), and early autumn (September, +0.13°C). For unchanged forest and cropland areas, we found no statistically significant ET trends. However, Sen’s slope indicated increasing ET in April, May, June, and September for forest areas and in May and June for cropland. Our results indicate that during the study period, the temperature changes may have lengthened the growing season, which affected the ET patterns of forest and cropland areas. The results also provide important insights into the regional water balance and complement the findings of other studies.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Julia Ledien ◽  
Zulma M. Cucunubá ◽  
Gabriel Parra-Henao ◽  
Eliana Rodríguez-Monguí ◽  
Andrew P. Dobson ◽  
...  

AbstractAge-stratified serosurvey data are often used to understand spatiotemporal trends in disease incidence and exposure through estimating the Force-of-Infection (FoI). Typically, median or mean FoI estimates are used as the response variable in predictive models, often overlooking the uncertainty in estimated FoI values when fitting models and evaluating their predictive ability. To assess how this uncertainty impact predictions, we compared three approaches with three levels of uncertainty integration. We propose a performance indicator to assess how predictions reflect initial uncertainty.In Colombia, 76 serosurveys (1980–2014) conducted at municipality level provided age-stratified Chagas disease prevalence data. The yearly FoI was estimated at the serosurvey level using a time-varying catalytic model. Environmental, demographic and entomological predictors were used to fit and predict the FoI at municipality level from 1980 to 2010 across Colombia.A stratified bootstrap method was used to fit the models without temporal autocorrelation at the serosurvey level. The predictive ability of each model was evaluated to select the best-fit models within urban, rural and (Amerindian) indigenous settings. Model averaging, with the 10 best-fit models identified, was used to generate predictions.Our analysis shows a risk of overconfidence in model predictions when median estimates of FoI alone are used to fit and evaluate models, failing to account for uncertainty in FoI estimates. Our proposed methodology fully propagates uncertainty in the estimated FoI onto the generated predictions, providing realistic assessments of both central tendency and current uncertainty surrounding exposure to Chagas disease.


Author(s):  
Soatiana Rajatonirina ◽  
Fanjasoa Rakatomanana ◽  
Laurence Randrianasolo ◽  
Norosoa Harline Razanajatovo ◽  
Soa Fy Andriamandimby ◽  
...  

Background: Epidemics pose major threats in resource-poor countries, and surveillance tools for their early detection and response are often inadequate. In 2007, a sentinel surveillance system was established in Madagascar, with the aim of rapidly identifying potential epidemics of febrile or diarrhoeal syndromes and issuing alerts. We present the health and process indicators for the five years during which this system was constructed, showing the spatiotemporal trends, early-warning sign detection capability and process evaluation through timely analyses of high-quality data.Methods: The Malagasy sentinel surveillance network is currently based on data for fever and diarrhoeal syndromes collected from 34 primary health centres and reported daily via the transmission of short messages from mobile telephones. Data are analysed daily at the Institut Pasteur de Madagascar to make it possible to issue alerts more rapidly, and integrated process indicators (timeliness, data quality) are used to monitor the system.Results: From 2007 to 2011, 917,798 visits were reported. Febrile syndromes accounted for about 11% of visits annually, but the trends observed differed between years and sentinel sites. From 2007 to 2011, 21 epidemic alerts were confirmed. However, delays in data transmission were observed (88% transmitted within 24 hours in 2008; 67% in 2011) and the percentage of forms transmitted each week for validity control decreased from 99.9% in 2007 to 63.5% in 2011.Conclusion: A sentinel surveillance scheme should take into account both epidemiological and process indicators. It must also be governed by the main purpose of the surveillance and by local factors, such as the motivation of healthcare workers and telecommunication infrastructure. Permanent evaluation indicators are required for regular improvement of the system. 


2020 ◽  
Vol 35 (2) ◽  
pp. 357-374
Author(s):  
Paulo Miguel de Bodas Terassi ◽  
José Francisco de Oliveira Júnior ◽  
Givanildo de Gois ◽  
Bruno Serafini Sobral ◽  
Emerson Galvani ◽  
...  

Abstract The knowledge of intensity and frequency of rainfall allows establishing predictive measures to minimize impacts caused by high volume of rainfall totals in a region. Therefore, the objective is to evaluate daily rainfall for Paraná slope of the Itararé watershed (PSIW) and to verify the spatiotemporal trend of intense and extreme daily rainfall. Rainfall data from 14 stations collected from 1976 to 2012 were used with less than 4% of data faults. Multivariate analysis based on cluster analysis technique (CA) was used applying the Euclidean distance for the identification of homogeneous groups, and the quantiles technique to classify daily rainfall. The Mann-Kendall (MK) test was used to identify trends for annual rainfall totals, annual number of rainy days (ANRD) and for the occurrence of intense (R95p) and extreme (R99p) rainfall. The CA technique identified three rainfall groups (HG I, II and III). Given the latitudinal position of the area, rainfall at the southern sector is characterized by its greater similarities with the subtropical climate, whereas in the North sector there is a consistent reduction of rainfall totals in autumn and, especially, during winter months, which are characteristic of the tropical climate. The MK test identified the downward trend of ANRD, with greater significance for the south-centered sectors of the basin. The observed trends for the intense (R95p) and extreme (R99p) daily rainfall show the predominance of reduction for the Southwest and central sector, followed by a significant increase in the Southeast and North sectors of the PSIW.


2021 ◽  
Vol 8 ◽  
Author(s):  
Alba Frias-De-Diego ◽  
Manuel Jara ◽  
Brittany M. Pecoraro ◽  
Elisa Crisci

Diversity, ecology, and evolution of viruses are commonly determined through phylogenetics, an accurate tool for the identification and study of lineages with different pathological characteristics within the same species. In the case of PRRSV, evolutionary research has divided into two main branches based on the use of a specific gene (i.e., ORF5) or whole genome sequences as the input used to produce the phylogeny. In this study, we performed a review on PRRSV phylogenetic literature and characterized the spatiotemporal trends in research of single gene vs. whole genome evolutionary approaches. Finally, using publicly available data, we produced a Bayesian phylodynamic analysis following each research branch and compared the results to determine the pros and cons of each particular approach. This study provides an exploration of the two main phylogenetic research lines applied for PRRSV evolution, as well as an example of the differences found when both methods are applied to the same database. We expect that our results will serve as a guidance for future PRRSV phylogenetic research.


Author(s):  
Celso Augusto Guimarães Santos ◽  
Reginaldo Moura Brasil Neto ◽  
Richarde Marques da Silva ◽  
Jacqueline Sobral de Araújo Passos

Sign in / Sign up

Export Citation Format

Share Document