Thermal inactivation of Salmonella during hard and soft cookies baking process

2021 ◽  
pp. 103874
Author(s):  
Lakshmikantha H. Channaiah ◽  
Minto Michael ◽  
Jennifer C. Acuff ◽  
Randall K. Phebus ◽  
Harshavardhan Thippareddi ◽  
...  
1997 ◽  
Vol 78 (05) ◽  
pp. 1372-1380 ◽  
Author(s):  
André L Fuly ◽  
Olga L T Machado ◽  
Elias W Alves ◽  
Célia R Carlinis

SummaryCrude venom from Lachesis muta exhibited procoagulant, proteolytic and phospholipase A2 activities. A phospholipase A2, denoted LM-PLA2 was purified from L. muta venom to homogeneity, through a combination of chromatographic steps involving gel-filtration on Sephacryl S-200 HR and reverse phase chromatography on a C2/C18 column. LM-PLA2 presented a single polypeptide chain with an isoelectric point at pH 4.7 and apparent molecular weight of 17 kDa. Partial aminoacid sequence indicated a high degree of homology for LM-PLA2 with other PLA2 from different sources.LM-PLA2 displayed a potent enzymatic activity as measured by indirect hemolysis of red blood cells but it was neither lethal when injected i.p. into mice nor did it present anticoagulant activity. Furthermore, LM-PLA2 displayed a moderate inhibitory activity on the aggregation of rabbit platelets induced by low levels of ADP, thrombin and arachidonate. In contrast, platelet aggregation induced by high doses of collagen was strongly inhibited by LM-PLA2 as well as ATP-release. Treatment of the protein with p-bromophenacyl bromide or 2-mercapto-ethanol, as well as thermal inactivation studies, suggested that the platelet inhibitory effect of LM-PLA2 is dependent on its enzymatic activity. Thus, the platelet inhibitory activity of LM-PLA2 was shown to be dependent on the hydrolysis of plasma phospholipids and/or lipoproteins, most probably those rich in phosphatidylcholine. Surprisingly, lyso-phosphatidylcholine released by LM-PLA2 from plasma was shown to preferentially inhibited collagen-induced platelet aggregation, in contrast to other PLA2s, whose plasma hydrolytic products indistinctly affect platelet’s response to several agonists.


2020 ◽  
Vol 29 (11) ◽  
pp. 50-55
Author(s):  
V.I. Maklyukov ◽  
◽  
E.O. Gerasimova ◽  
N. V. Labutina ◽  
E.N. Rogozkin ◽  
...  

The article considers the results of research conducted during electric contact heating of rye-wheat dough pieces. It is established that the electrical conductivity of the crumb dough does not depend on the total humidity of the material, but mainly on the amount of free moisture. Using the current and temperature graphs, you can imagine how free moisture changes during the baking process and the influence of the thermophysical and colloidal process on the change in the value of free moisture. Experimentally determined the amount of heat that is spent on baking 1 kg of bread. The accuracy of the theoretical calculation of this parameter in the heat balance of the baking chamber is confirmed.


2003 ◽  
Vol 69 (7) ◽  
pp. 4123-4128 ◽  
Author(s):  
R. T. Bacon ◽  
J. R. Ransom ◽  
J. N. Sofos ◽  
P. A. Kendall ◽  
K. E. Belk ◽  
...  

ABSTRACT The heat resistance of susceptible and multiantimicrobial-resistant Salmonella strains grown to stationary phase in glucose-free tryptic soy broth supplemented with 0.6% yeast extract (TSBYE−G; nonadapted), in regular (0.25% glucose) TSBYE, or in TSBYE−G with 1.00% added glucose (TSBYE+G; acid adapted) was determined at 55, 57, 59, and 61°C. Cultures were heated in sterile 0.1% buffered peptone water (50 μl) in heat-sealed capillary tubes immersed in a thermostatically controlled circulating-water bath. Decimal reduction times (D values) were calculated from survival curves having r 2 values of >0.90 as a means of comparing thermal tolerance among variables. D 59°C values increased (P < 0.05) from 0.50 to 0.58 to 0.66 min for TSBYE−G, TSBYE, and TSBYE+G cultures, respectively. D 61°C values of antimicrobial-susceptible Salmonella strains increased (P < 0.05) from 0.14 to 0.19 as the glucose concentration increased from 0.00 to 1.00%, respectively, while D 61°C values of multiantimicrobial-resistant Salmonella strains did not differ (P > 0.05) between TSBYE−G and TSBYE+G cultures. When averaged across glucose levels and temperatures, there were no differences (P > 0.05) between the D values of susceptible and multiantimicrobial-resistant inocula. Collectively, D values ranged from 4.23 to 5.39, 1.47 to 1.81, 0.50 to 0.66, and 0.16 to 0.20 min for Salmonella strains inactivated at 55, 57, 59, and 61°C, respectively. zD values were 1.20, 1.48, and 1.49°C for Salmonella strains grown in TSBYE+G, TSBYE, and TSBYE−G, respectively, while the corresponding activation energies of inactivation were 497, 493, and 494 kJ/mol. Study results suggested a cross-protective effect of acid adaptation on thermal inactivation but no association between antimicrobial susceptibility and the ability of salmonellae to survive heat stress.


1981 ◽  
Vol 193 (3) ◽  
pp. 811-818 ◽  
Author(s):  
T Ludolph ◽  
E Paschke ◽  
J Glössl ◽  
H Kresse

Enzymic cleavage of beta-N-acetylglucosamine residues of keratan sulphate was studied in vitro by using substrate a [3H]glucosamine-labelled desulphated keratan sulphate with N-acetylglucosamine residues at the non-reducing end. Both lysosomal beta-N-acetylhexosaminidases A and B are proposed to participate in the degradation of keratan sulphate on the basis of the following observations. Homogenates of fibroblasts from patients with Sandhoff disease, but not those from patients with Tay–Sachs disease, were unable to release significant amounts of N-acetyl[3H]glucosamine. On isoelectric focusing of beta-N-acetylhexosaminidase from human liver the peaks of keratan sulphate-degrading activity coincided with the activity towards p-nitrophenyl beta-N-acetylglucosaminide. A monospecific antibody against the human enzyme reacted with both enzyme forms and precipitated the keratan sulphate-degrading activity. Both isoenzymes had the same apparent Km of 4mM, but the B form was approximately twice as active as the A form when compared with the activity towards a chromogenic substrate. Differences were noted in the pH–activity profiles of both isoenzymes. Thermal inactivation of isoenzyme B was less pronounced towards the polymeric substrate than towards the p-nitrophenyl derivative.


2021 ◽  
Vol 112 ◽  
pp. 174-187
Author(s):  
Teng Cheng ◽  
Juming Tang ◽  
Ren Yang ◽  
Yucen Xie ◽  
Long Chen ◽  
...  

2021 ◽  
Vol 85 (2) ◽  
pp. 386-390
Author(s):  
Manami Suzuki ◽  
Teisuke Takita ◽  
Kohei Kuwata ◽  
Kota Nakatani ◽  
Tongyang Li ◽  
...  

ABSTRACT The mechanism of thermostabilization of GH10 xylanase, XynR, from Bacillus sp. strain TAR-1 by the mutation of S92 to E was investigated. Thermodynamic analysis revealed that thermostabilization was driven by the decrease in entropy change of activation for thermal inactivation. Crystallographic analysis suggested that this mutation suppressed the fluctuation of the amino acid residues at position 92-95.


Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 96
Author(s):  
Frank Vriesekoop ◽  
Annie Haynes ◽  
Niels van der Heijden ◽  
Hao Liang ◽  
Paraskevi Paximada ◽  
...  

The utilisation of food production by-products back into food production within a circular food economy is one of the driving examples to improve sustainability within the food industry. Brewers spent grain is the most abundant by-product from the brewing industry, with currently most of it being used as animal feed. In this study, we utilised brewers spent grain as a substrate in a solid-state fermentation in order to produce a Type-3 sourdough culture. Sourdough bread is becoming increasingly popular throughout the western world. The use of fermented brewers spent grain in the production of sourdough bread yielded sourdough bread that was acceptable by consumers. We also investigated the production and presence of the main organic acids in sourdough during the proofing process and the baking process. The baking trials showed that there was a reduction in both lactic and acetic acid content during the actual baking process. The reduction in the concentration of both organic acids appears to be at the heart of the observation that for both organic acids, there is typically a lower concentration in the crust compared to the crumb of the sourdough breads, which was observed in our sourdough breads and those commercially available.


Sign in / Sign up

Export Citation Format

Share Document