Tartary buckwheat ( Fagopyrum tataricum Gaertn.) starch, a side product in functional food production, as a potential source of retrograded starch

2016 ◽  
Vol 190 ◽  
pp. 552-558 ◽  
Author(s):  
Jinfeng Gao ◽  
Ivan Kreft ◽  
Guimei Chao ◽  
Ying Wang ◽  
Xiaojin Liu ◽  
...  
Fagopyrum ◽  
2021 ◽  
Vol 38 (1) ◽  
pp. 5-13
Author(s):  
Shinya Kasajima

Tartary buckwheat (Fagopyrum tataricum(L.) Gaertn.) is considered a functional food because its seeds contain higher amounts of polyphenols (e.g., rutin) compared to common buckwheat. However, because of its highly bitter taste and difficulties in cultivation, the agricultural production and usage of Tartary buckwheat in food products remain limited. The nutritional and functional ingredients of Tartary buckwheat include quercetin, which causes its bitterness and is generated by rutinosidase (rutin-degrading enzyme). A nonbitter Tartary buckwheat variety with trace levels of rutinosidase has recently been developed. Despite such research, there is still a lack of agronomic information on Tartary buckwheat. Lodging can be a significant problem during its cultivation, and a lodging-resistant, semidwarf variety has been developed. This paper summarizes recent advances in our knowledge regarding the nutritional and agronomic traits of Tartary buckwheat. The information extends our understanding of the health benefits of Tartary buckwheat and the solutions to challenges in its agricultural production. Keywords: agronomic traits, nutrient function, Tartary buckwheat


2015 ◽  
Vol 2015 ◽  
pp. 1-4 ◽  
Author(s):  
Aleksandra Golob ◽  
Vekoslava Stibilj ◽  
Ivan Kreft ◽  
Mateja Germ

Tartary buckwheat (Fagopyrum tataricum) is a semiwild plant grown in the Himalaya region. Due to its high concentration of flavonoids and trace elements it is of interest for cultivation in other countries as well. The feasibility of increasing the concentration of Se in grain and in green parts of Tartary buckwheat has not yet been investigated. The aim of this investigation was thus to determine the concentration of Se in different edible parts of Tartary buckwheat treated with different concentrations of Na selenate using different techniques. In plants grown in soil fertilized once with 0.5 and 10 mg Se L−1, Se was efficiently translocated from the roots to the leaves and seeds. Foliar spraying with 0.5 mg Se L−1increased Se content in leaves and seeds. Among the edible parts of Tartary buckwheat plants the highest content of Se in control and in treated groups was found in leaves, followed by seeds and stems. Regarding recommended Se concentration, edible parts of Tartary buckwheat were safe for human consumption. Soil fertilization with 0.5 and 10 mg Se L−1and foliar fertilization with 0.5 mg Se L−1are applicable for cultivation of Tartary buckwheat as a functional food enriched with Se.


2019 ◽  
Vol 25 (6) ◽  
pp. 915-920
Author(s):  
Tatsuro Suzuki ◽  
Toshikazu Morishita ◽  
Shigenobu Takigawa ◽  
Takahiro Noda ◽  
Koji Ishiguro

2012 ◽  
Vol 7 (2) ◽  
pp. 183-193
Author(s):  
Barbara Grzybowska

This paper characterises the directions of innovative activities undertaken by food industry enterprises concerning the manufacturing of food products. Based on the subject literature and secondary statistical data, the status of food industry innovativeness and areas of innovative activities related to implementation of technological and non-technological innovations are presented. The activities of enterprises focus on manufacturing new products in response to the ever-changing needs and expectations of consumers. In particular, the production of so-called functional food (which seeks to promote health, minimise the risk of specific diseases, improve psychophysical fitness, lose weight, etc.) is increasingly extensive. Manufacturers must also improve the technologies and techniques of product manufacturing, packaging and storage. 


2016 ◽  
Vol 22 (4) ◽  
pp. 557-562 ◽  
Author(s):  
Koji Ishiguro ◽  
Toshikazu Morishita ◽  
Junzo Ashizawa ◽  
Tatsuro Suzuki ◽  
Takahiro Noda

2017 ◽  
Vol 8 ◽  
pp. 49 ◽  
Author(s):  
Tanveer Bilal Pirzadah ◽  
Bisma Malik ◽  
Inayatullah Tahir ◽  
Reiaz Ul Rehman

<p>The aim of the present study was to explore the possible metabolites in the methanolic extract of root, stem, groat and hull of the neutraceutical crop, <em>Fagopyrum tataricum</em> using GC-MS technique. From GC-MS metabolite profiling, over 90 different metabolites were identified among root, stem, groat and hull extract.  The most prevailing compounds were 3, 3’, 4’, 5, 7-pentahydroflavone-3-rhamnoglucoside (71.94%) in groat, 9, 12-octadecadienoic acid (49.38%) in root, 6-octadecanoic acid, a steric acid (70.46%) in hull and Cis-9-hexadecanal (13.38%) in stem. Present investigation reveals that <em>F. tataricum</em> is an excellent source of many metabolites such as, fatty acids, hydrocarbons, steroids, terpenoids, esters, organic acids and aldehydes with excellent pharmaceutical properties. These results suggest that tartary buckwheat could be a promising alternative in the functional food sector and neutraceutical to improve social well-being and diminish malnutrition.</p>


Sign in / Sign up

Export Citation Format

Share Document