Bisphenol S increases the obesogenic effects of a high-glucose diet through regulating lipid metabolism in Caenorhabditis elegans

2021 ◽  
Vol 339 ◽  
pp. 127813
Author(s):  
Xiang Xiao ◽  
Xiaowei Zhang ◽  
Juan Bai ◽  
Jie Li ◽  
Caiqin Zhang ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Charlotte H. Hulme ◽  
Anna Nicolaou ◽  
Sharon A. Murphy ◽  
Alexander E. P. Heazell ◽  
Jenny E. Myers ◽  
...  

Abstract Diabetes mellitus (DM) during pregnancy can result in fetal overgrowth, likely due to placental dysfunction, which has health consequences for the infant. Here we test our prediction from previous work using a placental cell line that high glucose concentrations affect placental lipid metabolism. Placentas from women with type 1 (n = 13), type 2 (n = 6) or gestational (n = 12) DM, BMI-matched to mothers without DM (n = 18), were analysed for lipase and fatty acid transport proteins and fatty acid and triglyceride content. Explants from uncomplicated pregnancies (n = 6) cultured in physiological or high glucose were similarly analysed. High glucose levels did not alter placental lipase or transporter expression or the profile and abundance of fatty acids, but triglyceride levels were higher (p < 0.05), suggesting reduced β- oxidation. DM did not affect placental protein expression or fatty acid profile. Triglyceride levels of placentas from mothers with pre-existing DM were similar to controls, but higher in obese women with gestational DM. Maternal hyperglycemia may not affect placental fatty acid uptake and transport. However, placental β-oxidation is affected by high glucose and reduced in a subset of women with DM. Abnormal placental lipid metabolism could contribute to increased maternal-fetal lipid transfer and excess fetal growth in some DM pregnancies.


Aging Cell ◽  
2020 ◽  
Vol 19 (6) ◽  
Author(s):  
Anubhuti Dixit ◽  
Anjali Sandhu ◽  
Souvik Modi ◽  
Meghana Shashikanth ◽  
Sandhya P. Koushika ◽  
...  

2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 38-38
Author(s):  
Jang Miran ◽  
Zhang Yuan ◽  
Bai Juan ◽  
Jun-Bae An ◽  
Park Yeonhwa ◽  
...  

Abstract Objectives Lipolysis is the catabolic process that hydrolyzes triglyceride (TG) to free fatty acids (FFAs) and glycerol under negative energy balance such as fasting. In adipocytes, adipose TG lipase (ATGL), hormone-sensitive lipase (HSL), and monoglyceride lipase play key roles in a series of TG hydrolysis reactions in mammals. However, overly activated adipose lipolysis is believed to contribute to link between obesity and systemic inflammation and oxidative stress. We previously demonstrated that piceatannol (PIC), a natural resveratrol analogue, inhibits adipogenesis in cultured adipocytes and lipogenesis in Caenorhabditis elegans. Furthermore, we showed that PIC extends the lifespan of C. elegans via the insulin/IGF-1 signaling. However, the effects of PIC on lipid metabolism during fasting state is unknown. Methods We conducted Oil-Red-O assay, Enzyme assay (TG and Free glycerol contents), PCR analysis and lifespan assay. Results In this study, we demonstrated that PIC-treated C. elegans exhibited suppressed lipolysis under fasting as judged by increased lipid accumulation and TG levels with decreased free glycerol level. Consistent with these findings, PIC treatment resulted in decreased mRNA levels of genes involved lipolysis such as atgl-1, hosl-1 and aak-2 in fasted C. elegans. Also, PIC treatment augmented fasting-induced lifespan of C. elegans by an increased daf-16 gene expression. However, such effect was abolished when atgl-1, aak-2, and daf-16 mutants were treated with PIC. In addition, we also found that autophagy is required for PIC-induced lifespan in C. elegans during fasting since autophagy inhibitor treatments and autophagy gene deficient worms resulted in blunting the lifespan extension effect of PIC. Conclusions Collectively, our results indicate that PIC contributes to lifespan extension in C. elegans during fasting possibly through regulating lipolysis- and/or autophagy-dependent lipid metabolism. Funding Sources 1. The National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (2019R1A2C1086146) and (2019R1A6A3A03033878) 2. The Rural Development Administration of the Republic of Korea.


PLoS ONE ◽  
2019 ◽  
Vol 14 (12) ◽  
pp. e0226652 ◽  
Author(s):  
Jonathan Alcántar-Fernández ◽  
Angélica González-Maciel ◽  
Rafael Reynoso-Robles ◽  
Martha Elva Pérez Andrade ◽  
Alain de J. Hernández-Vázquez ◽  
...  

2015 ◽  
Vol 211 (2) ◽  
pp. 261-271 ◽  
Author(s):  
Vineet Choudhary ◽  
Namrata Ojha ◽  
Andy Golden ◽  
William A. Prinz

Lipid droplets (LDs) are found in all cells and play critical roles in lipid metabolism. De novo LD biogenesis occurs in the endoplasmic reticulum (ER) but is not well understood. We imaged early stages of LD biogenesis using electron microscopy and found that nascent LDs form lens-like structures that are in the ER membrane, raising the question of how these nascent LDs bud from the ER as they grow. We found that a conserved family of proteins, fat storage-inducing transmembrane (FIT) proteins, is required for proper budding of LDs from the ER. Elimination or reduction of FIT proteins in yeast and higher eukaryotes causes LDs to remain in the ER membrane. Deletion of the single FIT protein in Caenorhabditis elegans is lethal, suggesting that LD budding is an essential process in this organism. Our findings indicated that FIT proteins are necessary to promote budding of nascent LDs from the ER.


Diabetologia ◽  
2014 ◽  
Vol 58 (2) ◽  
pp. 393-401 ◽  
Author(s):  
Michael Mendler ◽  
Andreas Schlotterer ◽  
Youssef Ibrahim ◽  
Georgi Kukudov ◽  
Thomas Fleming ◽  
...  

PLoS Genetics ◽  
2017 ◽  
Vol 13 (5) ◽  
pp. e1006806 ◽  
Author(s):  
Rosalind Hussey ◽  
Jon Stieglitz ◽  
Jaleh Mesgarzadeh ◽  
Tiffany T. Locke ◽  
Ying K. Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document