Essential oil microemulsions inactivate antibiotic-resistant Salmonella Newport and spoilage bacterium Lactobacillus casei on Iceberg lettuce during 28-day storage at 4°C

Food Control ◽  
2021 ◽  
pp. 108209
Author(s):  
Stephanie Arellano ◽  
Bibiana Law ◽  
Mendel Friedman ◽  
Sadhana Ravishankar
2020 ◽  
Vol 44 (1) ◽  
Author(s):  
E. L. Mejía-Argueta ◽  
J. G. Santillán-Benítez ◽  
M. M. Canales-Martinez ◽  
A. Mendoza-Medellín

Abstract Background To test the antimicrobial potential of clove essential oil that has been less investigated on antimicrobial-resistant organisms (extended-spectrum β-lactamase-ESBL-producing Escherichia coli), we collected 135 ESBL-producing Escherichia coli strains given that E. coli is the major organism increasingly isolated as a cause of complicated urinary and gastrointestinal tract infections, which remains an important cause of therapy failure with antibiotics for the medical sector. Then, in this study, we evaluated the relationship between the antibacterial potential activity of Syzygium aromaticum essential oil (EOSA) and the expression of antibiotic-resistant genes (SHV-2, TEM-20) in plasmidic DNA on ESBL-producing E. coli using RT-PCR technique. Results EOSA was obtained by hydrodistillation. Using Kirby-Baüer method, we found that EOSA presented a smaller media (mean = 15.59 mm) in comparison with chloramphenicol (mean = 17.73 mm). Thus, there were significant differences (p < 0.0001). Furthermore, EOSA had an antibacterial activity, particularly on ECB132 (MIC: 10.0 mg/mL and MBC: 80.0 mg/mL), and a bacteriostatic effect by bactericidal kinetic. We found that the expression of antibiotic-resistant gene blaTEM-20 was 23.52% (4/17 strains) and no expression of blaSHV-2. EOSA presented such as majority compounds (eugenol, caryophyllene) using the GC–MS technique. Conclusions Plant essential oils and their active ingredients have potentially high bioactivity against a different target (membranes, cytoplasm, genetic material). In this research, EOSA might become an important adjuvant against urinary and gastrointestinal diseases caused by ESBL-producing E. coli.


2020 ◽  
Vol 8 (6) ◽  
pp. 960
Author(s):  
Mona Shaaban ◽  
Ola A. Abd El-Rahman ◽  
Bashair Al-Qaidi ◽  
Hossam M. Ashour

The emergence of biofilm-forming, multi-drug-resistant (MDR) Proteus mirabilis infections is a serious threat that necessitates non-antibiotic therapies. Antibiotic susceptibility and biofilm-forming activity of P. mirabilis isolates from urine samples were assessed by disc diffusion and crystal violet assays, respectively. Antimicrobial activities of probiotic Lactobacilli were evaluated by agar diffusion. Antibiofilm and anti-adherence activities were evaluated by crystal violet assays. While most P. mirabilis isolates were antibiotic-resistant to varying degrees, isolate P14 was MDR (resistant to ceftazidime, cefotaxime, amoxicillin-clavulanic acid, imipenem, ciprofloxacin, and amikacin) and formed strong biofilms. Cultures and cell-free supernatants of Lactobacillus casei and Lactobacillus reuteri exhibited antimicrobial and antibiofilm activities. The 1/16 concentration of untreated supernatants of L. casei and L. reuteri significantly reduced mature biofilm formation and adherence of P14 by 60% and 72%, respectively (for L. casei), and by 73% each (for L. reuteri). The 1/8 concentration of pH-adjusted supernatants of L. casei and L. reuteri significantly reduced mature biofilm formation and adherence of P14 by 39% and 75%, respectively (for L. casei), and by 73% each (for L. reuteri). Scanning electron microscopy (SEM) confirmed eradication of P14’s biofilm by L. casei. L. casei and L. reuteri could be utilized to combat Proteus-associated urinary tract infections.


Author(s):  
Erin Cieslak ◽  
James P. Mack ◽  
Albert Rojtman

<p><strong>Objective: </strong>Essential oils are of significant interest in today’s world of healthcare because these compounds have a variety of medicinal properties. In this study, we evaluated the <em>in vitro</em> antibiotic role of essential oils as a possible alternative treatment in combatting Methicillin-resistant <em>Staphylococcus aureus</em> (MRSA).</p><p><strong>Methods: </strong>In conjunction with carrier oils, three essential oils (cassia, cinnamon bark, and thyme), as well as methylglyoxal were tested on MRSA using the Kirby-Bauer disc diffusion method.</p><p><strong>Results: </strong>The minimum inhibitory concentration of each tested essential oil and methylglyoxal in carrier oil was determined to be 25% essential oil and 75% carrier oil mixture. This concentration worked much more effectively than the standard antibiotic, vancomycin, which is currently used to treat MRSA infections.</p><p><strong>Conclusion: </strong>Antibacterial emollients made from naturally occurring products like essential oils can be cost-effective alternatives to antibiotics. The results of this research show that these emollients are more effective against MRSA than standard antibiotics in cell culture.</p>


Author(s):  
Matthew Gavino Donadu ◽  
Yeimmy Peralta-Ruiz ◽  
Donatella Usai ◽  
Francesca Maggio* ◽  
Davide Rizzo ◽  
...  

The problem of drug resistance in terms of antifungal therapy, unknown until a few years ago, is assuming increasing importance. Particularly in immunosuppressed patients and subject to chemotherapy and radiotherapy. In the last years the use of essential oils as approach to improving the effectiveness of antifungal agents and reducing the antibiotic resistant has been proposed. Our research aimed to evaluate the antifungal activity of Colombian essential oil of Ruta graveolens (REO) against clinical strains of Candida albicans, Candida parapsilopsis, C. glabrata and Candida tropicalis. The data obtained showed that Candida tropicalis and Candida albicans were most sensible strains showing minimum inhibitory concentrations (MIC) of 0.5 and 1.0 &micro;g/ml of REO. The Time Kill Kinetics assay demonstrated that REO showed fungicide effect against C. tropicalis and fungistatic effect against C. albicans. In addition, the 40% of the biofilm formed by C. albicans was eradicated using 1% of REO after 1 hour of exposure.


2011 ◽  
Vol 56 (2) ◽  
pp. 909-915 ◽  
Author(s):  
Katherine A. Hammer ◽  
Christine F. Carson ◽  
Thomas V. Riley

ABSTRACTThis study examined the effect of subinhibitoryMelaleuca alternifolia(tea tree) essential oil on the development of antibiotic resistance inStaphylococcus aureusandEscherichia coli. Frequencies of single-step antibiotic-resistant mutants were determined by inoculating bacteria cultured with or without subinhibitory tea tree oil onto agar containing 2 to 8 times the MIC of each antibiotic and with or without tea tree oil. Whereas most differences in resistance frequencies were relatively minor, the combination of kanamycin and tea tree oil yielded approximately 10-fold fewer resistantE. colimutants than kanamycin alone. The development of multistep antibiotic resistance in the presence of tea tree oil or terpinen-4-ol was examined by culturingS. aureusandE. coliisolates daily with antibiotic alone, antibiotic with tea tree oil, and antibiotic with terpinen-4-ol for 6 days. Median MICs for each antibiotic alone increased 4- to 16-fold by day 6. Subinhibitory tea tree oil or terpinen-4-ol did not greatly alter results, with day 6 median MICs being either the same as or one concentration different from those for antibiotic alone. For tea tree oil and terpinen-4-ol alone, day 6 median MICs had increased 4-fold forS. aureus(n= 18) and 2-fold forE. coli(n= 18) from baseline values. Lastly, few significant changes in antimicrobial susceptibility were seen forS. aureusandS. epidermidisisolates that had been serially subcultured 14 to 22 times with subinhibitory terpinen-4-ol. Overall, these data indicate that tea tree oil and terpinen-4-ol have little impact on the development of antimicrobial resistance and susceptibility.


2016 ◽  
Vol 54 (12) ◽  
pp. 3272-3279 ◽  
Author(s):  
Mateus de Oliveira Negreiros ◽  
Ângela Pawlowski ◽  
Cláudia Alcaraz Zini ◽  
Geraldo Luiz Gonçalves Soares ◽  
Amanda de Souza Motta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document