scholarly journals An exploratory consumer study of 3D printed food perception in a real-life military setting

2020 ◽  
Vol 86 ◽  
pp. 104001 ◽  
Author(s):  
Sophie Caulier ◽  
Esmée Doets ◽  
Martijn Noort
2018 ◽  
Vol 22 (2) ◽  
pp. 128-136 ◽  
Author(s):  
Kyle W. Eastwood ◽  
Vivek P. Bodani ◽  
Faizal A. Haji ◽  
Thomas Looi ◽  
Hani E. Naguib ◽  
...  

OBJECTIVEEndoscope-assisted repair of craniosynostosis is a safe and efficacious alternative to open techniques. However, this procedure is challenging to learn, and there is significant variation in both its execution and outcomes. Surgical simulators may allow trainees to learn and practice this procedure prior to operating on an actual patient. The purpose of this study was to develop a realistic, relatively inexpensive simulator for endoscope-assisted repair of metopic and sagittal craniosynostosis and to evaluate the models’ fidelity and teaching content.METHODSTwo separate, 3D-printed, plastic powder–based replica skulls exhibiting metopic (age 1 month) and sagittal (age 2 months) craniosynostosis were developed. These models were made into consumable skull “cartridges” that insert into a reusable base resembling an infant’s head. Each cartridge consists of a multilayer scalp (skin, subcutaneous fat, galea, and periosteum); cranial bones with accurate landmarks; and the dura mater. Data related to model construction, use, and cost were collected. Eleven novice surgeons (residents), 9 experienced surgeons (fellows), and 5 expert surgeons (attendings) performed a simulated metopic and sagittal craniosynostosis repair using a neuroendoscope, high-speed drill, rongeurs, lighted retractors, and suction/irrigation. All participants completed a 13-item questionnaire (using 5-point Likert scales) to rate the realism and utility of the models for teaching endoscope-assisted strip suturectomy.RESULTSThe simulators are compact, robust, and relatively inexpensive. They can be rapidly reset for repeated use and contain a minimal amount of consumable material while providing a realistic simulation experience. More than 80% of participants agreed or strongly agreed that the models’ anatomical features, including surface anatomy, subgaleal and subperiosteal tissue planes, anterior fontanelle, and epidural spaces, were realistic and contained appropriate detail. More than 90% of participants indicated that handling the endoscope and the instruments was realistic, and also that the steps required to perform the procedure were representative of the steps required in real life.CONCLUSIONSBoth the metopic and sagittal craniosynostosis simulators were developed using low-cost methods and were successfully designed to be reusable. The simulators were found to realistically represent the surgical procedure and can be used to develop the technical skills required for performing an endoscope-assisted craniosynostosis repair.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2144
Author(s):  
Maria Sevastaki ◽  
Mirela Petruta Suchea ◽  
George Kenanakis

In the present work, the use of nanocomposite polymeric filaments based on 100% recycled solid polystyrene everyday products, enriched with TiO2 nanoparticles with mass concentrations up to 40% w/w, and the production of 3D photocatalytic structures using a typical fused deposition modeling (FDM)-type 3D printer are reported. We provide evidence that the fabricated 3D structures offer promising photocatalytic properties, indicating that the proposed technique is indeed a novel low-cost alternative route for fabricating large-scale photocatalysts, suitable for practical real-life applications.


2020 ◽  
Vol 12 (24) ◽  
pp. 10485
Author(s):  
Salmabanu Luhar ◽  
Thadshajini Suntharalingam ◽  
Satheeskumar Navaratnam ◽  
Ismail Luhar ◽  
Julian Thamboo ◽  
...  

The concept of sustainability and the utilization of renewable bio-based sources have gained prominent attention in the construction industry. Material selection in construction plays a significant role in design and manufacturing process of sustainable building construction. Several studies are being carried out worldwide to investigate the potential use of natural fibres as reinforcement in concrete with its noticeable environmental benefits and mechanical properties. 3D printed concrete (3DPC) is another emerging technology, which has been under-developed for the past decade. The integration of reinforcement is one of the major challenges in the application of this new technology in real-life scenario. Presently, artificial fibres have been used as a reinforcement material for this special printable concrete mixture. However, natural fibre composites have received significant attention by many 3DPC constructions due to their lightweight energy conservation and environmentally friendly nature. These benchmarking characteristics unlock the wider area of natural fibres into the composite sector and challenge the substitution of artificial fibres. Hence, this paper presents a comprehensive review on the current practice and advantages of natural fibres in conventional concrete construction. Subsequently, with a view to the future efficient 3DPC construction, the potentials of natural fibres such as eco-friendly, higher impact, thermal, structural, and fire performance over the artificial fibres were highlighted, and their applicability in 3DPC as composites was recommended.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 168
Author(s):  
Maria Sevastaki ◽  
Vassilis M. Papadakis ◽  
Cosmin Romanitan ◽  
Mirela Petruta Suchea ◽  
George Kenanakis

The present paper reports a novel approach for fabrication of eco-friendly ZnO nanoparticles onto three-dimensional (3D)-printed polylactic acid (PLA) scaffolds/structures. Several alcohol-based traditional Greek liquors were used to achieve the corrosion of metallic zinc collected from a typical galvanic anode to obtain photocatalytic active nanostructured ZnO, varying from water, to Greek “ouzo” and “raki”, and pure ethanol, in combination with “Baker’s ammonia” (ammonium bicarbonate), sold worldwide in every food store. The photocatalytic active ZnO nanostructures onto three-dimensional (3D)-printed PLA scaffolds were used to achieve the degradation of 50 ppm paracetamol in water, under UV irradiation. This study provides evidence that following the proposed low-cost, eco-friendly routes for the fabrication of large-scale photocatalysts, an almost 95% degradation of 50 ppm paracetamol in water can be achieved, making the obtained 3D ZnO/PLA structures excellent candidates for real life environmental applications. This is the first literature research report on a successful attempt of using this approach for the engineering of low-cost photocatalytic active elements for pharmaceutical contaminants in waters.


BMC Surgery ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Luigi Marano ◽  
Alessandro Ricci ◽  
Vinno Savelli ◽  
Luigi Verre ◽  
Luca Di Renzo ◽  
...  

Abstract Background Three-dimensional (3D) printing may represent a useful tool to provide, in surgery, a good representation of surgical scenario before surgery, particularly in complex cases. Recently, such a technology has been utilized to plan operative interventions in spinal, neuronal, and cardiac surgeries, but few data are available in the literature about their role in the upper gastrointestinal surgery. The feasibility of this technology has been described in a single case of gastroesophageal reflux disease with complex anatomy due to a markedly tortuous descending aorta. Methods A 65-year-old Caucasian woman was referred to our Department complaining heartburn and pyrosis. A chest computed tomography evidenced a tortuous thoracic aorta and consequent compression of the esophagus between the vessel and left atrium. A “dysphagia aortica” has been diagnosed. Thus, surgical treatment of anti-reflux surgery with separation of the distal esophagus from the aorta was planned. To define the strict relationship between the esophagus and the mediastinal organs, a life-size 3D printed model of the esophagus including the proximal stomach, the thoracic aorta and diaphragmatic crus, based on the patient’s CT scan, was manufactured. Results The robotic procedure was performed with the da Vinci Surgical System and lasted 175 min. The surgeons had navigational guidance during the procedure since they could consult the 3D electronically superimposed processed images, in a “picture-in-picture” mode, over the surgical field displayed on the monitor as well as on the robotic headset. There was no injury to the surrounding organs and, most importantly, the patient had an uncomplicated postoperative course. Conclusions The present clinical report highlights the feasibility, utility and clinical effects of 3D printing technology for preoperative planning and intraoperative guidance in surgery, including the esophagogastric field. However, the lack of published data requires more evidence to assess the effectiveness and safety of this novel surgical-applied printing technology.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Luca Orecchia ◽  
Diego Manfrin ◽  
Stefano Germani ◽  
Dario Del Fabbro ◽  
Anastasios D. Asimakopoulos ◽  
...  

Abstract Purpose Training in retrograde intrarenal surgery for the treatment of renal stone disease is a challenging task due to the unique complexity of the procedure. This study introduces a series of 3D printed models of upper urinary tract and stones designed to improve the training process. Methods Six different models of upper urinary tract were algorithmically isolated, digitally optimized and 3D printed from real-life cases. Soft and hard stones in different sizes were produced from 3D printed moulds. The models were fitted onto a commercially available part-task trainer and tested for retrograde intrarenal surgery. Results Each step of the procedure was simulated with extraordinary resemblance to real-life cases. The unique anatomical intricacy of each model and type of stones allowed us to reproduce surgeries of increasing difficulty. As the case-load required to achieve proficiency in retrograde intrarenal surgery is high, benchtop simulation could be integrated in training programs to reach good outcomes and low complication rates faster. Our models match incredible anatomical resemblance with low production cost and high reusability. Validation studies and objective skills assessment during simulations would allow comparison with other available benchtop trainers and the design of stepwise training programs. Conclusions 3D printing is gaining a significant importance in surgical training. Our 3D printed models of the upper urinary tract might represent a risk-free training option to hasten the achievement of proficiency in endourology.


Author(s):  
Wilfried Krois ◽  
Lukas Schmölz ◽  
Michael Wagner ◽  
Peter Gröpel ◽  
Ewald Unger ◽  
...  

Abstract Introduction For the classification of the complexity of cloacal malformations and the decision on the operative approach, an exact anatomical assessment is mandatory. To benefit from using three-dimensional (3D)-printed models in preoperative planning and training, the practicability of these models should be guaranteed. The aim of this study was to evaluate the quality and feasibility of a real-size 3D-printed cloaca model for the purpose of cysto-vaginoscopic evaluation. Materials and Methods We performed a 3D reconstruction and printed a real-size, rubber-like 3D model of an infant pelvis with a cloacal malformation and asked invited pediatric surgeons and pediatric urologists to perform a cysto-vaginoscopy on the model and to complete a brief questionnaire to rate the quality and feasibility of the model and to indicate whether they would recommend the model for preoperative planning and training. Results Overall, 41 participants rated the model quality as good to very good (M = 3.28, standard deviation [SD] = 0.50, on a scale from 1 to 4). The model was rated as feasible for preoperative training (M = 4.10, SD = 0.75, on a scale from 1 to 5) and most participants (85.4%) would recommend the model for preoperative training. The cysto-vaginoscopy of the model was considered as a valid training tool for real-life cases and improved the confidence on the anatomy of a cloaca. Conclusion The results of our study indicate that patient-specific 3D-printed models might be a useful tool in the preoperative evaluation of complex anorectal malformations by simulation of cysto-vaginoscopy with an excellent view on anatomical structures to assess the whole spectrum of the individual cloacal malformation. Our model might be a valuable add-on tool for specialty training in pediatric colorectal surgery.


2019 ◽  
Vol 71 ◽  
pp. 168-171 ◽  
Author(s):  
Jing Liu ◽  
Estelle Petit ◽  
Anne-Cecile Brit ◽  
Agnes Giboreau
Keyword(s):  

Author(s):  
Saravanan Thirumuruganathan ◽  
Soon-gyo Jung ◽  
Dianne Ramirez Robillos ◽  
Joni Salminen ◽  
Bernard J. Jansen

AbstractUsing 27 million flight bookings for 2 years from a major international airline company, we built a Next Likely Destination model to ascertain customers’ next flight booking. The resulting model achieves an 89% predictive accuracy using historical data. A unique aspect of the model is the incorporation of self-competence, where the model defers when it cannot reasonably make a recommendation. We then compare the performance of the Next Likely Destination model in a real-life consumer study with 35,000 actual airline customers. In the user study, the model obtains a 51% predictive accuracy. What happened? The Individual Behavior Framework theory provides insights into possibly explaining this inconsistency in evaluation outcomes. Research results indicate that algorithmic approaches in competitive industries must account for shifting customer preferences, changes to the travel environment, and confounding business effects rather than relying solely on historical data.


2016 ◽  
Vol 25 (6) ◽  
pp. 740-744 ◽  
Author(s):  
Atul Goel ◽  
Bhavin Jankharia ◽  
Abhidha Shah ◽  
Prashant Sathe

Complex craniovertebral junctional anomalies can be daunting to treat surgically, and preoperative information regarding the osseous abnormalities, course of the vertebral arteries, size of the pedicles, and location of the transverse foramina is invaluable to surgeons operating on these challenging cases. The authors present their experience with the emerging technology of 3D model acquisition for surgery in 11 cases of complex craniovertebral junction region anomalies. For each case, a 3D printed model was made from thin CT scans using a 64-slice CT scanner. The inclination of the joints, the presence of false articulations, the size of the pedicles, and the course of the vertebral arteries were studied preoperatively on the 3D models. The sizes of the plates and screws to be used and the angle of insertion of the screws were calculated based on the data from the models. The model was scaled to actual size and was kept beside the operating surgeon in its anatomical position during surgery. The potential uses of the models and their advantages over conventional radiological investigations are discussed. The authors conclude that 3D models can be an invaluable aid during surgery for complex craniovertebral junction anomalies. The information available from a real life-size model supersedes the information available from 3D CT reconstructions and can also be superior to virtual simulation. The models are both cost effective and easy to build and the authors suggest that they may form the basis of investigations in the near future for craniovertebral junction surgery.


Sign in / Sign up

Export Citation Format

Share Document