scholarly journals Effect of equivalence ratio and staging ratio on the methane MILD combustion in dual-stage combustor

Fuel ◽  
2022 ◽  
Vol 307 ◽  
pp. 121903
Author(s):  
Mingming Huang ◽  
Ruichuan Li ◽  
Jikang Xu ◽  
Shen Cheng ◽  
Haoxin Deng ◽  
...  
Author(s):  
Huan Zhang ◽  
Zhedian Zhang ◽  
Yan Xiong ◽  
Yan Liu ◽  
Yunhan Xiao

The Moderate or Intense Low-oxygen Dilution (MILD) combustion is characterized by low emission, stable combustion and low noise for various kinds of fuel. MILD combustion is a promising combustion technology for gas turbine. The model combustor composed of an optical quartz combustor liner, four jet nozzles and one pilot nozzle has been designed in this study. The four jet nozzles are equidistantly arranged in the combustor concentric circle and the high-speed jet flows from the nozzles will entrain amount of exhaust gas to make MILD combustion occur. The combustion characteristics of the model combustor under atmosphere pressure have been investigated through experiments and numerical simulations. The influence of equivalence ratio and jet velocity on flow pattern, combustion characteristics and exhaust emissions were investigated in detail, respectively. Laser Doppler velocity (LDV) was utilized to measure the speed of a series of points in the model combustor. The measurement results show that a central recirculation existed in the combustion chamber. As the jet velocity of the nozzles increases, the amount of entrained mass by the jet increases simultaneously, however, the central recirculation zone is similar in shape and size. The recirculation of the model combustor will remain self-similar when the jet velocity varies in the range. The calculation model and method were verified through comparing with experimentally LDV data and be used to optimize the model combustor. Planar laser-induced fluorescence of hydroxyl radical (OH-PLIF) approaches were adopted to investigate the flame structure, the reaction zone and the OH distribution. OH distribution of the paralleled and crossed sections in the model combustor were measured, the whole reaction zone have been analyzed. The results show that the OH distribution was uniform in whole combustor. The exhaust gas composition of the combustor was measured by the “TESTO 350” Exhaust Gas Analyzer. All measurements emission results were corrected to 15% O2 in volume. Experimental results showed that NOx and CO emissions were less than 10 ppm@15%O2 when the equivalence ratio ranges from 0.63 to 0.8.


2020 ◽  
Author(s):  
Sofia Alexandra Milheiro ◽  
Joana Gonçalves ◽  
Ricardo Lopes ◽  
Margarida Madureira ◽  
Lis Lobo ◽  
...  

<p><a>A small library of “half-sandwich” cyclopentadienylruthenium(II) compounds of general formula [(</a>η<sup>5</sup>-C<sub>5</sub>R<sub>5</sub>)Ru(PPh<sub>3</sub>)(N-N)][PF<sub>6</sub>], a scaffold hitherto unfeatured in the toolbox of antiplasmodials, was screened for activity against the blood stage of CQ-sensitive 3D7-GFP, CQ-resistant Dd2 and artemisinin-resistant IPC5202 <i>Plasmodium falciparum</i> strains, and the liver stage of <i>P. berghei</i>. The best performing compounds displayed dual-stage activity, with single-digit nM IC<sub>50</sub> values against blood stage malaria parasites, nM activity against liver stage parasites, and residual cytotoxicity against mammalian cells (HepG2, Huh7). Parasitic absorption/distribution of 7-nitrobenzoxadiazole-appended fluorescent compounds <b>Ru4</b> and <b>Ru5</b> was investigated by confocal fluorescence microscopy, revealing parasite-selective absorption in infected erythrocytes and nuclear accumulation of both compounds. The lead compound <b>Ru2</b> impaired asexual parasite differentiation, exhibiting fast parasiticidal activity against both ring and trophozoite stages of a synchronized <i>P. falciparum</i> 3D7 strain. These results point to cyclopentadienylruthenium(II) complexes as a highly promising chemotype for the development of dual-stage antiplasmodials.</p>


Author(s):  
M. S. ASSAD ◽  
◽  
O. G. PENYAZKOV ◽  
I. I. CHERNUHO ◽  
K. ALHUSSAN ◽  
...  

This work is devoted to the study of the dynamics of combustion wave propagation in oxygen-enriched mixtures of n-heptane with air and jet fuel "Jet A-1" in a small-size pulsed detonation combustor (PDC) with a diameter of 20 mm and a length less than 1 m. Experiments are carried out after the PDC reaches a stationary thermal regime when changing the equivalence ratio (ϕ = 0.73-1.89) and the oxygen-to-air ratio ([O2/air] = 0.15-0.60). The velocity of the combustion wave is determined by measuring the propagation time of the flame front between adjacent pressure sensors that form measurement segements along the PDC.


2020 ◽  
Vol 28 (10) ◽  
pp. 2203-2214
Author(s):  
Jian ZHUANG ◽  
◽  
Zhi-wu WANG ◽  
Xiao-bo LIAO ◽  

2019 ◽  
Vol 18 (23) ◽  
pp. 2008-2021 ◽  
Author(s):  
Snigdha Singh ◽  
Neha Sharma ◽  
Charu Upadhyay ◽  
Sumit Kumar ◽  
Brijesh Rathi ◽  
...  

Malaria is a lethal disease causing devastating global impact by killing more than 8,00,000 individuals yearly. A noticeable decline in malaria related deaths can be attributed to the most reliable treatment, ACTs against P. falciparum. However, the cumulative resistance of the malaria parasite against ACTs is a global threat to control the disease and, therefore the new effective therapeutics are urgently needed, including new treatment approaches. Majority of the antimalarial drugs target BS malarial infection. Currently, scientists are eager to explore the drugs with potency against not only BS but other life stages such as sexual and asexual stages of the malaria parasite. Liver Stage is considered as one of the important drug targets as it always leads to BS and the infection can be cured at this stage before it enters into the Blood Stage. However, a limited number of compounds are reported effective against LS malaria infection probably due to scarcity of in vitro LS culture methods and clinical possibilities. This mini review covers a range of chemical compounds showing efficacy against BS and LS of the malaria parasite’s life cycle collectively (i.e. dual stage activity). These scaffolds targeting dual stages are essential for the eradication of malaria and to evade resistance.


2020 ◽  
Vol 53 (2) ◽  
pp. 13850-13854
Author(s):  
P. Polverino ◽  
I. Arsie ◽  
C. Pianese

Author(s):  
Vincent Kather ◽  
Finn Lückoff ◽  
Christian O. Paschereit ◽  
Kilian Oberleithner

The generation and turbulent transport of temporal equivalence ratio fluctuations in a swirl combustor are experimentally investigated and compared to a one-dimensional transport model. These fluctuations are generated by acoustic perturbations at the fuel injector and play a crucial role in the feedback loop leading to thermoacoustic instabilities. The focus of this investigation lies on the interplay between fuel fluctuations and coherent vortical structures that are both affected by the acoustic forcing. To this end, optical diagnostics are applied inside the mixing duct and in the combustion chamber, housing a turbulent swirl flame. The flame was acoustically perturbed to obtain phase-averaged spatially resolved flow and equivalence ratio fluctuations, which allow the determination of flux-based local and global mixing transfer functions. Measurements show that the mode-conversion model that predicts the generation of equivalence ratio fluctuations at the injector holds for linear acoustic forcing amplitudes, but it fails for non-linear amplitudes. The global (radially integrated) transport of fuel fluctuations from the injector to the flame is reasonably well approximated by a one-dimensional transport model with an effective diffusivity that accounts for turbulent diffusion and dispersion. This approach however, fails to recover critical details of the mixing transfer function, which is caused by non-local interaction of flow and fuel fluctuations. This effect becomes even more pronounced for non-linear forcing amplitudes where strong coherent fluctuations induce a non-trivial frequency dependence of the mixing process. The mechanisms resolved in this study suggest that non-local interference of fuel fluctuations and coherent flow fluctuations is significant for the transport of global equivalence ratio fluctuations at linear acoustic amplitudes and crucial for non-linear amplitudes. To improve future predictions and facilitate a satisfactory modelling, a non-local, two-dimensional approach is necessary.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 662
Author(s):  
Joanna Jójka ◽  
Rafał Ślefarski

This paper details the experimental and numerical analysis of a combustion process for atmospheric swirl burners using methane with added ammonia as fuel. The research was carried out for lean methane–air mixtures, which were doped with ammonia up to 5% and preheated up to 473 K. A flow with internal recirculation was induced by burners with different outflow angles from swirling blades, 30° and 50°, where tested equivalence ratio was 0.71. The NO and CO distribution profiles on specified axial positions of the combustor and the overall emission levels at the combustor outlet were measured and compared to a modelled outcome. The highest values of the NO emissions were collected for 5% NH3 and 50° (1950 ppmv), while a reduction to 1585 ppmv was observed at 30°. The doubling of the firing rates from 15 kW up to 30 kW did not have any great influence on the overall emissions. The emission trend lines were not proportional to the raising share of the ammonia in the fuel. 3D numerical tests and a kinetic study with a reactor network showed that the NO outlet concentration for swirl flame depended on the recirculation ratio, residence time, wall temperature, and the mechanism used. Those parameters need to be carefully defined in order to get highly accurate NO predictions—both for 3D simulations and simplified reactor-based models.


Sign in / Sign up

Export Citation Format

Share Document