A conserved Zn2Cys6 transcription factor, identified in a spontaneous mutant from in vitro passaging, is involved in pathogenicity of the blackleg fungus Leptosphaeria maculans

2021 ◽  
Author(s):  
Kylie R. Chambers ◽  
Angela P. Van de Wouw ◽  
Donald M. Gardiner ◽  
Candace E. Elliott ◽  
Alexander Idnurm
PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252333
Author(s):  
Andrew S. Urquhart ◽  
Candace E. Elliott ◽  
Wei Zeng ◽  
Alexander Idnurm

Sirodesmin, the major secondary metabolite produced by the plant pathogenic fungus Leptosphaeria maculans in vitro, has been linked to disease on Brassica species since the 1970s, and yet its role has remained ambiguous. Re-examination of gene expression data revealed that all previously described genes and two newly identified genes within the sir gene cluster in the genome are down-regulated during the crucial early establishment stages of blackleg disease on Brassica napus. To test if this is a strategy employed by the fungus to avoid damage to and then detection by the host plant during the L. maculans asymptomatic biotrophic phase, sirodesmin was produced constitutively by overexpressing the sirZ gene encoding the transcription factor that coordinates the regulation of the other genes in the sir cluster. The sirZ over-expression strains had a major reduction in pathogenicity. Mutation of the over-expression construct restored pathogenicity. However, mutation of two genes, sirP and sirG, required for specific steps in the sirodesmin biosynthesis pathway, in the sirZ over-expression background resulted in strains that were unable to synthesize sirodesmin, yet were still non-pathogenic. Elucidating the basis for this pathogenicity defect or finding ways to overexpress sirZ during disease may provide new strategies for the control of blackleg disease.


2005 ◽  
Vol 83 (4) ◽  
pp. 535-547 ◽  
Author(s):  
Gareth N Corry ◽  
D Alan Underhill

To date, the majority of the research regarding eukaryotic transcription factors has focused on characterizing their function primarily through in vitro methods. These studies have revealed that transcription factors are essentially modular structures, containing separate regions that participate in such activities as DNA binding, protein–protein interaction, and transcriptional activation or repression. To fully comprehend the behavior of a given transcription factor, however, these domains must be analyzed in the context of the entire protein, and in certain cases the context of a multiprotein complex. Furthermore, it must be appreciated that transcription factors function in the nucleus, where they must contend with a variety of factors, including the nuclear architecture, chromatin domains, chromosome territories, and cell-cycle-associated processes. Recent examinations of transcription factors in the nucleus have clarified the behavior of these proteins in vivo and have increased our understanding of how gene expression is regulated in eukaryotes. Here, we review the current knowledge regarding sequence-specific transcription factor compartmentalization within the nucleus and discuss its impact on the regulation of such processes as activation or repression of gene expression and interaction with coregulatory factors.Key words: transcription, subnuclear localization, chromatin, gene expression, nuclear architecture.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 19.1-19
Author(s):  
R. Symons ◽  
F. Colella ◽  
F. Collins ◽  
A. Roelofs ◽  
C. De Bari

Background:In rheumatoid arthritis (RA), the fibroblast-like synoviocytes (FLS) in synovial lining become invasive and cause joint destruction. The molecular mechanisms underpinning this pathogenic FLS phenotype are incompletely understood. The FLS descend from Growth differentiation factor 5 (Gdf5)-expressing joint interzone cells in the embryo, and we showed that conditional ablation of the transcriptional co-activator Yes associated protein (Yap) in Gdf5-lineage cells prevents synovial lining hyperplasia after traumatic cartilage injury in mice [1].Objectives:Here, we investigated a potential role for Yap in pathogenic FLS in immune-mediated inflammatory arthritis.Methods:Immunohistochemistry was used to detect Yap in human RA synovium and Yap, Snail and Ctgf in mouse synovium following antigen-induced arthritis (AIA). To determine the effect of Yap knockout (KO) in synovial stromal cells, AIA was induced in Gdf5-Cre;tdTomato;Yapfl/fl (Yap cKO) and Gdf5-Cre;tdTomato;Yapwt/wt (control) mice, or in Pdgfrα-CreER;Yapfl/fl (Yap ciKO, targeting Pdgfrα-expressing fibroblasts) and Yapfl/fl or YapWT/fl (control) mice after adult tamoxifen induction. Yap KO in both models was confirmed by immunohistochemistry. After nine days, arthritis severity was determined by histological scoring of synovial lining hyperplasia, immune infiltrates, cellular exudate, and marginal erosions. TdTomato+ Gdf5-lineage cells in synovium were quantified. In vitro, Yap reporter cells were treated with inflammatory cytokines to evaluate their ability to stimulate Yap-induced GFP expression by flow cytometry. Snail overexpression, siRNA-mediated Yap knockdown, and IL-6/sIL-6R stimulation were performed on normal mouse FLS, AIA-FLS or human RA-FLS, and cell invasion through a matrigel-coated transwell was quantified. A proximity ligation assay was utilised to detect Yap/Snail complex formation.Results:Average expression levels of Yap (p<0.0001), its transcription factor partner Snail (p=0.002), and their downstream target Ctgf (p=0.0003), were increased in mouse synovium after AIA (n=5), and Yap was highly expressed by FLS in human RA synovium. Yap cKO mice (n=24) showed a significantly decreased arthritis severity (p=0.002) after AIA compared to controls (n=22), with significant reductions in synovial lining hyperplasia (p<0.001), synovial immune cell infiltrates (p=0.026) and marginal erosions (p=0.002). Similarly, Yap ciKO mice (n=6) showed a significant decrease in arthritis score (p=0.039) after AIA compared to controls (n=9). However, both control mice (p<0.001) and Yap cKO mice (p<0.001) showed an extensive expansion of tdTomato+ Gdf5-lineage synovial cells after AIA, with no significant difference between control and Yap cKO mice. In vitro, Yap knockdown prevented IL-6/sIL-6R-induced invasion of normal mouse FLS (p=0.037) and decreased the invasiveness of AIA-FLS (p=0.0057). Using Yap reporter cells, we found that Yap was activated by IL-6/sIL-6R (p=0.016), but not TNFα or IL-1β. Finally, IL-6/sIL-6R treatment of normal mouse FLS (p=0.033) or human RA-FLS (p=0.036) induced Yap-Snail complex formation, and Yap knockdown prevented FLS invasion induced by Snail overexpression (p=0.027).Conclusion:These data demonstrate that via activation by IL-6, and co-operation with the transcription factor Snail, Yap acts as a key modulator of the invasive and destructive phenotype of FLS in inflammatory arthritis. Therapeutic targeting of Yap could reduce joint destruction in RA.References:[1]A. J. Roelofs et al., “Joint morphogenetic cells in the adult mammalian synovium,” Nat. Commun., vol. 8, no. May, p. 15040, 2017. DOI: 10.1136/annrheumdis-2018-213799Acknowledgements:This work was funded by the Medical Research Council (MR/L020211/1 and MR/L022893/1) and Versus Arthritis (20775 and 21156).Disclosure of Interests:None declared


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 480
Author(s):  
Rakshitha Pandulal Miskin ◽  
Janine S. A. Warren ◽  
Abibatou Ndoye ◽  
Lei Wu ◽  
John M. Lamar ◽  
...  

In the current study, we demonstrate that integrin α3β1 promotes invasive and metastatic traits of triple-negative breast cancer (TNBC) cells through induction of the transcription factor, Brain-2 (Brn-2). We show that RNAi-mediated suppression of α3β1 in MDA-MB-231 cells caused reduced expression of Brn-2 mRNA and protein and reduced activity of the BRN2 gene promoter. In addition, RNAi-targeting of Brn-2 in MDA-MB-231 cells decreased invasion in vitro and lung colonization in vivo, and exogenous Brn-2 expression partially restored invasion to cells in which α3β1 was suppressed. α3β1 promoted phosphorylation of Akt in MDA-MB-231 cells, and treatment of these cells with a pharmacological Akt inhibitor (MK-2206) reduced both Brn-2 expression and cell invasion, indicating that α3β1-Akt signaling contributes to Brn-2 induction. Analysis of RNAseq data from patients with invasive breast carcinoma revealed that high BRN2 expression correlates with poor survival. Moreover, high BRN2 expression positively correlates with high ITGA3 expression in basal-like breast cancer, which is consistent with our experimental findings that α3β1 induces Brn-2 in TNBC cells. Together, our study demonstrates a pro-invasive/pro-metastatic role for Brn-2 in breast cancer cells and identifies a role for integrin α3β1 in regulating Brn-2 expression, thereby revealing a novel mechanism of integrin-dependent breast cancer cell invasion.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1343
Author(s):  
Balaji Venkataraman ◽  
Saeeda Almarzooqi ◽  
Vishnu Raj ◽  
Abdullah T. Alhassani ◽  
Ahmad S. Alhassani ◽  
...  

Inflammatory bowel diseases (IBD) are chronic inflammatory disorders with increasing incidence and prevalence worldwide. Here, we investigated thymoquinone (TQ), a naturally occurring phytochemical present in Nigella sativa, for anti-inflammatory effects in colonic inflammation. To address this, we used in vivo (mice) and in vitro (HT-29 cells) models in this investigation. Our results showed that TQ treatment significantly reduced the disease activity index (DAI), myeloperoxidase (MPO) activity, and protected colon microscopic architecture. In addition, TQ also reduced the expression of proinflammatory cytokines and mediators at both the mRNA and protein levels. Further, TQ decreased phosphorylation of the activated mitogen-activated protein kinase (MAPK) signaling pathway and nuclear factor kappa B (NF-κB) proteins and enhanced colon epithelial PPAR-γ transcription factor expression. TQ significantly decreased proinflammatory chemokines (CXCL-1 and IL-8), and mediator (COX-2) mRNA expression in HT-29 cells treated with TNF-α. TQ also increased HT-29 PPAR-γ mRNA, PPAR-γ protein expression, and PPAR-γ promoter activity. These results indicate that TQ inhibits MAPK and NF-κB signaling pathways and transcriptionally regulates PPAR-γ expression to induce potent anti-inflammatory activity in vivo and in vitro models of colon inflammation.


2021 ◽  
Vol 22 (2) ◽  
pp. 683
Author(s):  
Camille Fraichard ◽  
Fidéline Bonnet-Serrano ◽  
Christelle Laguillier-Morizot ◽  
Marylise Hebert-Schuster ◽  
René Lai-Kuen ◽  
...  

Protease Inhibitors (PI e.g., ritonavir (RTV) and lopinavir (LPV)) used to treat pregnant mothers infected by HIV induce prematurity and endocrine dysfunctions. The maintenance of pregnancy relies on placental hormone production (human Chorionic Gonadotrophin (hCG) and progesterone (P4)). Those functions are ensured by the villous trophoblast and are mainly regulated by the Unfolded Protein Response (UPR) pathway and mitochondria. We investigated, in vitro, if PI impair hCG and P4 production and the potential intracellular mechanisms involved. Term villous cytotrophoblast (VCT) were cultured with or without RTV or LPV from 6 to 48 h. VCT differentiation into syncytiotrophoblast (ST) was followed measuring hCG and P4 secretion. We evaluated the expression of P4 synthesis partners (Metastatic Lymph Node 64 (MLN64), cholesterol side-chain cleavage (P450SCC), Hydroxy-delta-5-Steroid Dehydrogenase and 3 Beta-and steroid delta-isomerase 1 (HSD3B1)), of mitochondrial pro-fusion factors (Mitofusin 2 (Mfn2), Optic Atrophy 1 (OPA1)) and of UPR factors (Glucose-Regulated Protein 78 (GRP78), Activating Transcription Factor 4 (ATF4), Activating Transcription Factor 6 (ATF6), spliced X-box Binding Protein 1 (sXBP1)). RTV had no significant effect on hCG and P4 secretion, whereas lopinavir significantly decreased both secretions. LPV also decreased P450SCC and HSD3B1 expression, whereas it increased Mfn2, GRP78 and sXBP1 expression in ST. RTV has no effect on the endocrine placenta. LPV impairs both villous trophoblast differentiation and P4 production. It is likely to act via mitochondrial fusion and UPR pathway activation. These trophoblastic alterations may end in decreased P4 levels in maternal circulation, inducing prematurity.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ilaria Frasson ◽  
Paola Soldà ◽  
Matteo Nadai ◽  
Sara Lago ◽  
Sara N. Richter

AbstractG-quadruplexes (G4s) are four-stranded nucleic acid structures abundant at gene promoters. They can adopt several distinctive conformations. G4s have been shown to form in the herpes simplex virus-1 (HSV-1) genome during its viral cycle. Here by cross-linking/pull-down assay we identified ICP4, the major HSV-1 transcription factor, as the protein that most efficiently interacts with viral G4s during infection. ICP4 specific and direct binding and unfolding of parallel G4s, including those present in HSV-1 immediate early gene promoters, induced transcription in vitro and in infected cells. This mechanism was also exploited by ICP4 to promote its own transcription. Proximity ligation assay allowed visualization of G4-protein interaction at the single selected G4 in cells. G4 ligands inhibited ICP4 binding to G4s. Our results indicate the existence of a well-defined G4-viral protein network that regulates the productive HSV-1 cycle. They also point to G4s as elements that recruit transcription factors to activate transcription in cells.


Sign in / Sign up

Export Citation Format

Share Document