Experimental prediction of total thermal resistance of a closed loop EAHE for greenhouse cooling system

Author(s):  
Onder Ozgener ◽  
Leyla Ozgener ◽  
D. Yogi Goswami
Author(s):  
Ahmad Saleh ◽  
Jayanta Kapat

Restriction on water consumption is becoming an increasing problem for the power generation industry. As an alternative both to once-through cooling and to surface condenser/wet-cooling tower combination, utility companies and equipment manufacturers are considering, and even implementing, air-cooled condenser (ACC). However, the industry is quite reluctant to switch over to ACC for three important reasons: (a) lower power output, (b) higher capital cost, and (c) larger physical foot-print, all because of the same reason — it is not as efficient to transfer heat from condensing steam to air as it is to transfer to water. In other words, overall thermal resistance from condensing steam to the ambient air is significantly higher than to cooling water. To get a clear and full understanding of the heat transfer process occur in air-cooling condenser, Detailed mathematical equations were derived to model the heat transfer process through the fined-tubes of the ACC. The total thermal resistance model was analyzed and investigated to identify the design components with highest affect in the process. The paper proposes a viable cooling system based on novel heat pipe technology which addresses these problems. This technology employs boiling as the means to store and transfer heat energy. A detailed mathematical set of equations was derived to model the heat pipe thermal resistance. A comparison of the heat transfer performances of the ACC technology and the proposed method is presented. The proposed cooling system suggests a solution for each of the three components of the thermal resistance, the super-hydrophobic coating of the steam ducts internal surfaces increased the condensing heat transfer rate by an order of magnitude, the proposed design of the heat pipes improved the external heat transfer, and the installation mechanism improves the fin efficiency by eliminating the contact resistance between steam duct and the heat pipe.


2016 ◽  
Vol 78 (10-2) ◽  
Author(s):  
Nik Mohamad Sharif ◽  
Normah Mohd Ghazali

The usage of a very large scale integrated circuits generate high heat fluxes and require an effective cooling system. A microchannel heat sink (MCHS) is one of the reliable cooling systems that had been applied. In terms of performance, a MCHS can be appraised by obtaining low total thermal resistance and pumping power. However, as the total thermal resistance decreases, the pumping power will increase. A few studies have been focused on the minimization of the thermal resistance and pumping power of a multi-stack MCHS. Optimization of two objective functions which are the total thermal resistance and pumping power has been done by using genetic algorithm. It is demonstrated that both objective functions can be minimized by optimizing two design variables which are the channel aspect ratio, , and wall width ratio, . It was found that the usage of a stacked configuration for the MCHS is able to reduce the total thermal resistance. From the optimization, it was found that the optimum number of stacks that can be implemented is three. With the three-stack configuration, the total thermal resistance found is 0.1180 K/W which is 21.8% less compared to the single-stack MCHS. However, the pumping power needed for the three-stack MCHS is increased by 0.17 % compared to single-stack which is 0.7535 W.


2021 ◽  
Author(s):  
Liang Zhao ◽  
Mohan Lei ◽  
Hongdi Ren ◽  
Jinshi Wang ◽  
Shuai Wang ◽  
...  

Abstract Spindles in precision boring machine often work in low speed and heavy load without internal cooling, and the thermal error is nonnegligible. So an external cooling system was designed, and the effectiveness of the designed scheme needs to be preliminarily verified by simulation before building the cooling system. Thermal simulations of the spindle with an external cooler require calculating the thermal resistance of the thermal grease-coated interface between the cooler and spindle. Models describing the contact thermal resistance and total thermal resistance for metal contact filled with silicone grease based on solid-liquid interface force equivalence were described in this paper, and experiments were also conducted to verify the accuracy of these models. The contact thermal resistances between the cast iron/copper and silicone grease on flat or arc surfaces were calculated, and the bulk thermal resistance of the silicone grease layer was calculated. The total heat transferred between the cooler and the silicone grease-coated interface of the spindle were calculated. Heat transfer and heat generation in the spindle were calculated, and a finite element model was established to verify the effectiveness of the designed external cooling scheme. Finally, results from experiments for the spindle in different conditions show that the external cooling system decreases the time to reach thermal equilibrium by more than 60%. The RMSE of the simulated thermal elongation is less than 5.7044 μm when the rotating speed of 3000 rpm, and is less than 3.9714 μm when the rotating speed is 1500 rpm.


Author(s):  
Tao Wang ◽  
Xuegong Hu ◽  
Dawei Tang

To solve the questions of the middle heat exchanger of space-based laser cooling system such as large heat transfer area and operating mode instability, a MC-MG (Microchannel-Microgroove) microscale heat exchanger is proposed and experimental study is carried out. The experimental results indicate that as the Reynolds number increases, the Nusselt number originally increases and then keeps constant. While adding the volumetric flow rate of distilled water in the microchannels, the total thermal resistance is first reduced and then becomes steady. With increasing the volumetric flow rate of distilled water, the total quantity of heat transfer increases first, then decreases and finally tends to be constant. The average heat transfer coefficient of the heat exchanger reaches to 1.6 × 104W/ (m2-K) and total thermal resistance is less than 0.21K/W. Therefore the solution to cooling laser with the heat exchanger is preferable.


2011 ◽  
Vol 216 ◽  
pp. 128-133 ◽  
Author(s):  
Chang Hong Wang ◽  
Jiang Yun Zhang ◽  
Jin Huang

The microelectronic chip thermoelectric cooling equipment and its test system have been developed for the deficiency of the conventional cooling technologies in this paper. The thermal resistance analysis model was applied in research the heat transfer process of the microelectronic chip cooling system and its characteristics. The results show that: When the thermoelectric cooling (TEC) system is in normal operating condition,the Peltier effect is the dominant role in the thermoelectric cooling process despite the opposite actions of the Joule and Fourier effects. The thermal resistance of TEC, which is Q2, decreases when the operating current (I) increases. For the different chip power, there is an optimum current (Iopt) making the interface thermal resistance between chip and TEC minimum (Q1). Q1can obtain the minimum 0.465°C·W-1 when the chip power is 25W and Iopt is 2.4A. The total thermal resistance (Qtotal) firstly decreases and then increases with the increase of operating current. There is an optimum current which allows the total thermal resistance is smallest. Qtotal may obtain the minimum value 0.672°C·W-1 when the chip power is 25W and Iopt is 2.4A. Furthermore, Qtotal Iopt both increase by the chip power.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Sridhar Sadasivam ◽  
Stephen L. Hodson ◽  
Matthew R. Maschmann ◽  
Timothy S. Fisher

A microstructure-sensitive thermomechanical simulation framework is developed to predict the mechanical and heat transfer properties of vertically aligned CNT (VACNT) arrays used as thermal interface materials (TIMs). The model addresses the gap between atomistic thermal transport simulations of individual CNTs (carbon nanotubes) and experimental measurements of thermal resistance of CNT arrays at mesoscopic length scales. Energy minimization is performed using a bead–spring coarse-grain model to obtain the microstructure of the CNT array as a function of the applied load. The microstructures obtained from the coarse-grain simulations are used as inputs to a finite volume solver that solves one-dimensional and three-dimensional Fourier heat conduction in the CNTs and filler matrix, respectively. Predictions from the finite volume solver are fitted to experimental data on the total thermal resistance of CNT arrays to obtain an individual CNT thermal conductivity of 12 W m−1 K−1 and CNT–substrate contact conductance of 7 × 107 W m−2 K−1. The results also indicate that the thermal resistance of the CNT array shows a weak dependence on the CNT–CNT contact resistance. Embedding the CNT array in wax is found to reduce the total thermal resistance of the array by almost 50%, and the pressure dependence of thermal resistance nearly vanishes when a matrix material is introduced. Detailed microstructural information such as the topology of CNT–substrate contacts and the pressure dependence of CNT–opposing substrate contact area are also reported.


Author(s):  
Seyyed Khandani ◽  
Himanshu Pokharna ◽  
Sridhar Machiroutu ◽  
Eric DiStefano

Remote heat pipe based heat exchanger cooling systems are becoming increasingly popular in cooling of notebook computers. In such cooling systems, one or more heat pipes transfer the heat from the more populated area to a location with sufficient space allowing the use of a heat exchanger for removal of the heat from the system. In analsysis of such systems, the temperature drop in the condenser section of the heat pipe is assumed negligible due to the nature of the condensation process. However, in testing of various systems, non linear longitudinal temperature drops in the heat pipe in the range of 2 to 15 °C, for different processor power and heat exchanger airflow, have been measured. Such temperature drops could cause higher condenser thermal resistance and result in lower overall heat exchanger performance. In fact the application of the conventional method of estimating the thermal performance, which does not consider such a nonlinear temperature variations, results in inaccurate design of the cooling system and requires unnecessarily higher safety factors to compensate for this inaccuracy. To address the problem, this paper offers a new analytical approach for modeling the heat pipe based heat exchanger performance under various operating conditions. The method can be used with any arbitrary condenser temperature variations. The results of the model show significant increase in heat exchanger thermal resistance when considering a non linear condenser temperature drop. The experimental data also verifies the result of the model with sufficient accuracy and therefore validates the application of this model in estimating the performance of these systems.   This paper was also originally published as part of the Proceedings of the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Krzysztof Posobkiewicz ◽  
Krzysztof Górecki

Purpose The purpose of this study is to investigate the validation of the usefulness of cooling systems containing Peltier modules for cooling power devices based on measurements of the influence of selected factors on the value of thermal resistance of such a cooling system. Design/methodology/approach A cooling system containing a heat-sink, a Peltier module and a fan was built by the authors and the measurements of temperatures and thermal resistance in various supply conditions of the Peltier module and the fan were carried out and discussed. Findings Conclusions from the research carried out answer the question if the use of Peltier modules in active cooling systems provides any benefits comparing with cooling systems containing just passive heat-sinks or conventional active heat-sinks constructed of a heat-sink and a fan. Research limitations/implications The research carried out is the preliminary stage to asses if a compact thermal model of the investigated cooling system can be formulated. Originality/value In the paper, the original results of measurements and calculations of parameters of a cooling system containing a Peltier module and an active heat-sink are presented and discussed. An influence of power dissipated in the components of the cooling system on its efficiency is investigated.


Author(s):  
Lei Wang ◽  
Xudong Zhang ◽  
Dr. Jing Liu ◽  
Yixin Zhou

Abstract Liquid metal owns the highest thermal conductivity among all the currently available fluid materials. This property enables it to be a powerful coolant for the thermal management of large power device or high flux chip. In this paper, a high-efficiency heat dissipation system based on the electromagnetic driven rotational flow of liquid metal was demonstrated. The velocity distribution of the liquid metal was theoretically analyzed and numerically simulated. The results showed that the velocity was distributed unevenly along longitudinal section and the maximum velocity appears near the anode. On the temperature distribution profile of the heat dissipation system, the temperature on the electric heater side was much higher than the other regions and the role of the rotated liquid metal was to homogenize the temperature of the system. In addition, the thermal resistance model of the experimental device was established, and several relationships such as thermal resistance-power curve were experimentally measured. The heating power could be determined from the temperature-power relationship graph once the maximum control temperature was given. The heat dissipation method introduced in the paper provides a novel way for fabricating compact chip cooling system.


Sign in / Sign up

Export Citation Format

Share Document