Degradation mechanism of Acacia mangium tannin in NaOH/urea aqueous solution and application of degradation products in phenolic adhesives

2020 ◽  
Vol 98 ◽  
pp. 102556 ◽  
Author(s):  
Jian Liu ◽  
Liuliu Wang ◽  
Jiongjiong Li ◽  
Cheng Li ◽  
Shifeng Zhang ◽  
...  
2015 ◽  
Vol 73 (7) ◽  
pp. 1500-1510 ◽  
Author(s):  
Qing Zheng ◽  
Yong Dai ◽  
Xiangyun Han

In this study, ozonation treatment of C.I. Reactive Black 5 (RB5) was investigated at various operating parameters. The results showed that the aqueous solution initially containing 200 mg/L RB5 was quickly decolorized at pH 8.0 with an ozone dose of 3.2 g/h. Reaction intermediates with m/z 281, 546, 201, 350, 286 and 222 were elucidated using liquid chromatography-mass spectrometry, while sulfate ion, nitrate ion and three carboxylic acids (i.e., oxalic acid, formic acid, and acetic acid) were identified by ion exchange chromatography. Thus, the cleavage of the azo bond and the introduction of OH groups in the corresponding positions were proposed as the predominant reaction pathway. The detachment of sulfonic groups was also commonly observed during the ozonation treatment. The proposed degradation mechanism was confirmed by frontier electron density calculations, suggesting the feasibility of predicting the major events in the whole ozonation process with the computational method. Compared with RB5 degradation, the reduction of total organic carbon (TOC) proceeded much more slowly, and approximately 54% TOC was removed after 4 h of ozonation. Acute toxicity tests with Photobacterium phosphoreum showed that the toxicity of reaction solution was firstly increased and then decreased to a negligible level after 160 min.


2017 ◽  
Vol 75 (12) ◽  
pp. 2935-2951 ◽  
Author(s):  
Mingguo Peng ◽  
Huajie Li ◽  
Xu Kang ◽  
Erdeng Du ◽  
Dongdong Li

The removal of ibuprofen (IBP) in aqueous solution using UV/H2O2 process was evaluated. The response surface methodology (RSM) and Box–Behnken design were employed to investigate the effects of process parameters on IBP removal, including the initial IBP concentration, H2O2 dosage, UV light intensity, and initial pH value of solution. The RSM model developed herein fits well with the experiments, and provides a good insight into the OH radical irritated degradation mechanisms and kinetics. High resolution accurate mass spectrometry coupled with liquid chromatography was used to identify the degradation intermediates. A total of 23 degradation products were identified, including mono-hydroxylated products and dihydroxylated products. A series of OH radical-initiated reactions, including hydroxylation, dihydroxylation, decarboxylation, demethylation, ring break, lead to the final mineralization of IBP to CO2 and H2O. UV/H2O2 technology could be a promising technology for IBP removal in aqueous solution.


RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20486-20497
Author(s):  
Zhiyan Liu ◽  
Rui Ma ◽  
Wenjie Du ◽  
Gang Yang ◽  
Tao Chen

Chitosan hydrogel is regenerated from alkali/urea aqueous solution and the lithium sulfonate second network is introduced by electron beam radiation-initiated in situ free radical polymerization. The freeze-dried aerogel has CO2 capture capacity.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1059
Author(s):  
Jin Young Lee ◽  
Kyoung Chan Lim ◽  
Hyun Suk Kim

As a first step toward studying the properties of Novichok (ethyl (1-(diethylamino)ethylidene)phosphoramidofluoridate (A234)), we investigated its degradation products and fragmentation pathways in aqueous solution at different pH levels by liquid chromatography–tandem mass spectrometry. A234 was synthesized in our laboratory and characterized by nuclear magnetic resonance spectroscopy. Three sets of aqueous samples were prepared at different pH levels. A stock solution of A234 was prepared in acetonitrile at a concentration of 1 mg/mL and stored at −20 °C until use. Aqueous samples (0.1 mg/mL) were prepared by diluting the stock solution with deionized water. The acidic aqueous sample (pH = 3.5) and basic aqueous sample (pH = 9.4) were prepared using 0.01 M acetic acid and 0.01 M potassium carbonate, respectively. The analysis of the fragmentation patterns and degradation pathways of A234 showed that the same degradation products were formed at all pH levels. However, the hydrolysis rate of A234 was fastest under acidic conditions. In all three conditions, the fragmentation pattern and the major degradation product of A234 were determined. This information will be applicable to studies regarding the decontamination of Novichok and the trace analysis of its degradation products in various environmental matrices.


2018 ◽  
Vol 7 (1) ◽  
pp. 1120-1128 ◽  
Author(s):  
Binpeng Zhang ◽  
Dongjie Yang ◽  
Huan Wang ◽  
Yong Qian ◽  
JinHao Huang ◽  
...  

2018 ◽  
Vol 33 (4) ◽  
pp. 651-660 ◽  
Author(s):  
Yingju Miao ◽  
Yunfei Zhi ◽  
Heng Zhang ◽  
Ying Chen ◽  
Shaoyun Shan ◽  
...  

Abstract Hydrogen bonding among fiber microfibrils is the primary cause of fiber hornification, wherein NaOH/urea aqueous solution precooled to −13 °C can disassemble inter- and intramolecular hydrogen bonds. Whether hornified fibers treated with this process can significantly improve fiber swelling ability and physical properties of the resulting paper sheets remains a problem. In this investigation, the 6th cycle fiber was pretreated with this procedure, and the water retention value of the fiber before and after treatment and the physical properties of the resulting paper sheets were studied. The results indicate that the lignin decline, complete swelling of flat fiber, filling of cellulose film between the interfiber network, and decreasing crystalline region all contribute to the increase in water retention value. The water retention value of repaired fiber is equivalent to that of virgin pulp, and hornification reverses by 89 %. In addition, the cellulose film filling among the fiber network constructs a similar reinforced concrete structure, which causes the tear, burst, and tensile index of the resulting paper sheets to increase by 145 %, 98 %, and 43 %, respectively.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3150
Author(s):  
Jianye Xu ◽  
Siqi Zhou ◽  
Erdeng Du ◽  
Yongjun Sha ◽  
Lu Zheng ◽  
...  

The UV/chlorine process, as a new type of AOP (Advanced Oxidation Process), was utilized to treat amlodipine (AML)-containing water. The influencing factors, including chlorine dose, UV intensity, solution initial pH value, and ammonia concentration, were investigated. The degradation of AML in real water and the relative contributions of OH• and Cl• were also studied. Finally, high-resolution mass spectrometry (HRMS) and GC-MS were used to identify the possible degradation products. The results demonstrated that the AML degradation process was fitted with apparent first-order kinetics. AML degradation had a positive correlation with UV intensity and chlorine dose, and a negative correlation with ammonia concentration. In the presence of ammonia nitrogen and DOM, the removal of AML from real water was reduced. OH• made a dominant percentage contribution of 55.7% to the degradation of AML. Sixteen intermediates were detected and identified. A possible degradation mechanism was also proposed. Acute toxicity tests and risk prediction both illustrated that the complete removal of AML does not guarantee the reduction of acute toxicity, but a prolonged degradation promoted the detoxification of toxic intermediates. The UV/chlorine process can be regarded to be an effective method to remove AML and reduce ecological risk.


Sign in / Sign up

Export Citation Format

Share Document