Preparation of a multifunctional silver nanoparticles polylactic acid food packaging film using mango peel extract

Author(s):  
Jun Cheng ◽  
Xiaotong Lin ◽  
Xialing Wu ◽  
Qun Liu ◽  
Shoumei Wan ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5878
Author(s):  
Yage Xing ◽  
Xingmei Liao ◽  
Xiaocui Liu ◽  
Wenxiu Li ◽  
Ruihan Huang ◽  
...  

The green synthesis of silver nanoparticles (AgNPs) from biological waste, as well as their excellent antibacterial properties, is currently attracting significant research attention. This study synthesized AgNPs from different mango peel extract concentrations while investigating their characteristics and antibacterial properties. The results showed that the AgNPs were irregular with rod-like, spherical shapes and were detected in a range of 25 nm to 75 nm. The AgNPs displayed antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), showing a more significant impact when synthesized with 0.20 g/mL of mango peel extract. Therefore, the antibacterial effect of different diluted AgNP concentrations on the growth kinetic curves of E. coli and S. aureus after synthesis with 0.20 g/mL mango peel extract was analyzed. The results indicated that the AgNP antibacterial activity was higher against S. aureus than against E. coli, while the AgNP IC50 in these two strains was approximately 1.557 mg/mL and 2.335 mg/L, respectively. This research provides new insights regarding the use of postharvest mango byproducts and the potential for developing additional AgNP composite antibacterial materials for fruit and vegetable preservation.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3337
Author(s):  
Xi Huang ◽  
Xin Zhou ◽  
Qingyin Dai ◽  
Zhiyong Qin

The objective of this study was to prepare a functional biodegradable soy protein isolate (SPI) food packaging film by introducing a natural antimicrobial agent, mangosteen peel extract (MPE, 10 wt% based on SPI), and different concentrations of functional modifiers, ZnO NPs, into the natural polymer SPI by solution casting method. The physical, antioxidant, antibacterial properties and chemical structures were also investigated. The composite film with 5% ZnO NPs had the maximum tensile strength of 8.84 MPa and the lowest water vapor transmission rate of 9.23 g mm/m2 h Pa. The composite film also exhibited excellent UV-blocking, antioxidant, and antibacterial properties against Escherichia coli and Staphylococcus aureus. The TGA results showed that the introduction of MPE and ZnO NPs improved the thermal stability of SPI films. The microstructure of the films was analyzed by SEM to determine the smooth surface of the composite films. ATR-FTIR and XPS analyses demonstrated the strong hydrogen bonding of SPI, MPE, and ZnO NPs in the films. The presence of ZnO NPs in the composite films was also proved by EDX and XRD. These results suggest that SPI/MPE/ZnO composite film is promising for food-active packaging to extend the shelf life of food products.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Vinh Tien Nguyen

A green approach, including using phytochemicals in pomelo peel extract (PPE) and direct sunlight, was used to synthesize silver nanoparticles (AgNPs). PPE was prepared by treating pomelo peel with a citric acid solution at 85°C for 2 h. PPE was then mixed with AgNO3 and exposed to sunlight to induce the formation of AgNPs. Time-dependent UV-vis spectra of the reaction mixture demonstrated that AgNPs are formed under sunlight irradiation faster than underheating at 90°C. Characterization techniques, including X-ray diffraction, transmission electron microscopy, and scanning electron microscopy, confirmed the formation of AgNPs with sizes of 20–30 nm. AgNPs synthesized in PPE were more stable toward electrolyte-induced aggregation than those synthesized using the conventional NaBH4/citrate method. The AgNPs synthesized in PPE showed antibacterial activities comparable to those of AgNO3 at the same silver concentration against four pathogenic bacterial strains. The obtained PPE containing AgNPs, pectin, and other phytochemicals can be utilized further to produce antibacterial and antioxidant films in food packaging and medical applications.


2020 ◽  
Vol 11 (3) ◽  
pp. 66
Author(s):  
Umar M. Badeggi ◽  
Jelili A. Badmus ◽  
Subelia S. Botha ◽  
Enas Ismail ◽  
Jeanine L. Marnewick ◽  
...  

In this study, procyanidin dimers and Leucosidea sericea total extract (LSTE) were employed in the synthesis of silver nanoparticles (AgNPs) and characterized by ultraviolet-visible (UV-Visible) spectroscopy, high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), and dynamic light scattering (DLS) techniques. AgNPs of about 2–7 nm were obtained. DLS and stability evaluations confirmed that the AgNPs/procyanidins conjugates were stable. The formed nanoparticles exhibited good inhibitory activities against the two enzymes studied. The IC50 values against the amylase enzyme were 14.92 ± 1.0, 13.24 ± 0.2, and 19.13 ± 0.8 µg/mL for AgNPs coordinated with LSTE, F1, and F2, respectively. The corresponding values for the glucosidase enzyme were 21.48 ± 0.9, 18.76 ± 1.0, and 8.75 ± 0.7 µg/mL. The antioxidant activities were comparable to those of the intact fractions. The AgNPs also demonstrated bacterial inhibitory activities against six bacterial species. While the minimum inhibitory concentrations (MIC) of F1-AgNPs against Pseudomonas aeruginosa and Staphylococcus aureus were 31.25 and 15.63 µg/mL respectively, those of LSTE-AgNPs and F2-AgNPs against these organisms were both 62.50 µg/mL. The F1-AgNPs demonstrated a better bactericidal effect and may be useful in food packaging. This research also showed the involvement of the procyanidins as reducing and capping agents in the formation of stable AgNPs with potential biological applications.


Sign in / Sign up

Export Citation Format

Share Document