scholarly journals Antibacterial, Antioxidation, UV-Blocking, and Biodegradable Soy Protein Isolate Food Packaging Film with Mangosteen Peel Extract and ZnO Nanoparticles

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3337
Author(s):  
Xi Huang ◽  
Xin Zhou ◽  
Qingyin Dai ◽  
Zhiyong Qin

The objective of this study was to prepare a functional biodegradable soy protein isolate (SPI) food packaging film by introducing a natural antimicrobial agent, mangosteen peel extract (MPE, 10 wt% based on SPI), and different concentrations of functional modifiers, ZnO NPs, into the natural polymer SPI by solution casting method. The physical, antioxidant, antibacterial properties and chemical structures were also investigated. The composite film with 5% ZnO NPs had the maximum tensile strength of 8.84 MPa and the lowest water vapor transmission rate of 9.23 g mm/m2 h Pa. The composite film also exhibited excellent UV-blocking, antioxidant, and antibacterial properties against Escherichia coli and Staphylococcus aureus. The TGA results showed that the introduction of MPE and ZnO NPs improved the thermal stability of SPI films. The microstructure of the films was analyzed by SEM to determine the smooth surface of the composite films. ATR-FTIR and XPS analyses demonstrated the strong hydrogen bonding of SPI, MPE, and ZnO NPs in the films. The presence of ZnO NPs in the composite films was also proved by EDX and XRD. These results suggest that SPI/MPE/ZnO composite film is promising for food-active packaging to extend the shelf life of food products.

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Behrokh Shams ◽  
Nadereh Golshan Ebrahimi ◽  
Faramarz Khodaiyan

Antibacterial and biodegradable whey protein isolate (WPI-) gelatin nanocomposites were prepared using natural orange peel extract (OPE) in percentage of 7, 14, and 21% (v/v solution) and Cloisite 30B (5% w/w dry whey protein) made by a casting method. Mechanical, physical, and antibacterial properties of prepared films were measured as a function of OPE concentration. Higher concentrations of OPE led to higher antibacterial activity, tensile strength, and water solubility, but lower moisture content and transparency. The films microstructures were studied by field emission scanning electron microscopy (FESEM) and ATR-FTIR. Overall, the film containing 21%(v/v) OPE resulted in the best antibacterial, mechanical, and physical performance. Addition of tripolyphosphate (TPP) as a crosslinker to this sample led to the significant increase in transparency. Cloisite 30B, OPE, and TPP can therefore be used to improve the properties of WPI films as a promising natural food packaging.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2665
Author(s):  
Swarup Roy ◽  
Jong-Whan Rhim

Edible biopolymer (pullulan/carrageenan) based functional composite films were fabricated by the addition of copper sulfide nanoparticles (CuSNP) and D-limonene (DL). The DL and CuSNP were compatible with the pullulan/carrageenan biopolymer matrix. The addition of CuSNP significantly increased the UV-blocking properties without substantially reducing the transparency of the film. The addition of CuSNP improved the film’s tensile strength by 10%; however, the DL addition did not significantly influence the strength, while the combined addition of CuSNP and DL increased the strength by 15%. The addition of the fillers did not significantly affect the thermal stability of the film, but the water vapor barrier property was slightly improved. There was no significant change in the moisture content and hydrophobicity of the composite film. Besides, the composite film showed some antimicrobial activity against food-borne pathogenic bacteria. The fabricated pullulan/carrageenan-based film with antimicrobial and UV-barrier properties is likely to be used in active food packaging applications.


RSC Advances ◽  
2016 ◽  
Vol 6 (85) ◽  
pp. 82191-82204 ◽  
Author(s):  
Mehraj Ahmad ◽  
Nilesh Prakash Nirmal ◽  
Mohammed Danish ◽  
Julalak Chuprom ◽  
Shima Jafarzedeh

Composite films fabricated from collagen/chitosan and collagen/soy protein isolate for food packaging applications.


e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 575-589
Author(s):  
Xin Zhou ◽  
Qingyin Dai ◽  
Xi Huang ◽  
Zhiyong Qin

Abstract The mangosteen peel extract (MPE) was used to obtain soy protein isolate (SPI) films. The results show that MPE exhibited a high content of total phenolics and antioxidant activity. Moreover, the MPE can enhance the antibacterial–antioxidant properties, UV-visible light barrier properties, and water-resistant properties of the SPI films. The presence of MPE resulted in an increase in water vapor permeability and hydrophobicity. The extract addition also reduced the film’s crystallinity along with a decrease in the mechanical property and lowering of the maximum degradation temperature. Attenuated total reflectance Fourier transform infrared spectroscopy revealed that the polyphenols in MPE could interact with SPI through hydrogen bonds and hydrophobic interactions, and the addition of MPE changed the secondary structure of SPI with a decrease in β-sheets and an increase in β-turns and random coils. Scanning electron microscopy showed that all the films exhibited smooth and homogenous morphology on the surface and on some layers through cross-sectional images. Our results suggested that the MPE would be a promising ingredient to make SPI films used as an active packaging material.


Molecules ◽  
2019 ◽  
Vol 24 (13) ◽  
pp. 2363 ◽  
Author(s):  
Xue Liang ◽  
Shiyi Feng ◽  
Saeed Ahmed ◽  
Wen Qin ◽  
Yaowen Liu

Composite films containing different amounts of potassium sorbate (KS) were prepared by using fish scale collagen (Col) and polyvinyl alcohol (PVA). Fourier transform infrared spectroscopy (FTIR), light transmittance, mechanical, water vapor transmission rate (WVTR), and the antibacterial properties of the composite films were analyzed. The results showed that the addition of Col significantly reduced the light transmittance of the composite film, but KS had no significant effect on the light transmission. The tensile strength decreased first and then increased with the addition of KS, while the WVTR increased first and then decreased. The composite film exhibited a certain degree of antibacterial properties against E. coli and S. aureus. In addition, we found that ultrasonic treatment reduced the WVTR, and also improved tensile strength and elongation at break of the composite films, but had no significant effect on other properties. The KS/Col/PVA films have the potential to be used as antimicrobial food packaging.


e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 433-442
Author(s):  
Hua He ◽  
Rui-jing Jia ◽  
Kai-qiang Dong ◽  
Jia-wen Huang ◽  
Zhi-yong Qin

Abstract A novel biodegradable protein-based material (UMSPIE) that consists of natural polymer soy protein isolate (SPI), ultrasonic-modified montmorillonite (UMMT), and ethylene glycol diglycidyl ether (EGDE) was produced by solution casting. Fourier infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TG), and scanning electron microscopy (SEM) were used to characterize the chemical structure and micro-morphologies of as-synthesized protein-based composite films. The results showed that the interlayer structure of MMT was destroyed by ultrasonic treatment, and the hydrogen bonding between SPI chains and the ultrasound-treated MMT plates was enhanced. The synergistic effect of UMMT and EGDE on SPI molecules made the network structure of the UMSPIE film denser. In addition, the mechanical and barrier properties of the as-synthesized films were explored. Compared with pure soy protein film, the tensile strength of the UMSPIE film has an increase of 266.82% (increasing from 4.4 to 16.14 MPa). From the above, the modified strategy of layered silicates filling combining crosslinking agents is considered as an effective method to improve the functional properties of bio-based polymer composites.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ayse Kalemtas ◽  
Hasan B. Kocer ◽  
Ahmet Aydin ◽  
Pinar Terzioglu ◽  
Gulsum Aydin

Abstract In the current study, ZnO/chitosan bio-composite films were produced via solution-casting method. Two different ZnO powders, micrometer (d50 ≅ 1.5 μm) and nanometer sized (d50 ≅ 100 nm), were used to investigate the effect of ZnO particle size and concentration (0, 2, and 8% w/w of chitosan) on the mechanical and antibacterial properties of the ZnO/chitosan bio-composite films. The incorporation of the ZnO powders into the chitosan film resulted in an increase in the tensile strength (TS) and a decrease in the elongation at break (EB) values. Mechanical test results revealed that TS and EB properties were considerably affected (p < 0.05) by the concentration and particle size of the ZnO reinforcement. Disc diffusion method demonstrated good antibacterial activities of bio-composite films containing high amount of ZnO (8% w/w of chitosan) against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Bacillus subtilis. The growth-limiting effect of the films was more pronounced for S. aureus and K. pneumoniae. Due to enhanced TS and imparted antibacterial activity of the produced ZnO/chitosan bio-composite films, these materials are promising candidates for applications such as food packaging, wound dressing, and antibacterial coatings for various surfaces.


Foods ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1117
Author(s):  
Shubham Sharma ◽  
Sandra Barkauskaite ◽  
Brendan Duffy ◽  
Amit K. Jaiswal ◽  
Swarna Jaiswal

Bioactive packaging contains natural antimicrobial agents, which inhibit the growth of microorganisms and increase the food shelf life. Solvent casting method was used to prepare the Poly (lactide)-Poly (butylene adipate-co-terephthalate) (PLA-PBAT) film incorporated with the thyme oil and clove oil in various concentrations (1 wt%, 5 wt% and 10 wt%). The clove oil composite films depicted less green and more yellow as compared to thyme oil composite films. Clove oil composite film has shown an 80% increase in the UV blocking efficiency. The tensile strength (TS) of thyme oil and clove oil composite film decreases from 1.35 MPs (control film) to 0.96 MPa and 0.79, respectively. A complete killing of S. aureus that is a reduction from 6.5 log CFU/mL to 0 log CFU/mL was observed on the 10 wt% clove oil incorporated composite film. Clove oil and thyme oil composite film had inhibited E. coli biofilm by 93.43% and 82.30%, respectively. Clove oil composite film had exhibited UV blocking properties, strong antimicrobial activity and has high potential to be used as an active food packaging.


2010 ◽  
Vol 100 (1) ◽  
pp. 133-138 ◽  
Author(s):  
F. María Monedero ◽  
Alicia Hambleton ◽  
Pau Talens ◽  
Fréderic Debeaufort ◽  
Amparo Chiralt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document