scholarly journals Regulation strategies for mitigating voltage fluctuations induced by photovoltaic solar systems in an urban low voltage grid

Author(s):  
L.R. Visser ◽  
E.M.B. Schuurmans ◽  
T.A. AlSkaif ◽  
H.A. Fidder ◽  
A.M. van Voorden ◽  
...  
Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3755 ◽  
Author(s):  
Luis Gerardo González ◽  
Rommel Chacon ◽  
Bernardo Delgado ◽  
Dario Benavides ◽  
Juan Espinoza

The power generated by photovoltaic solar systems is exposed to high variability of irradiance mainly due to weather conditions, which cause instability in the electrical networks connected to these systems. This study shows the typical behavior of solar irradiance in an Andean city, which presents considerable variations that can reach up to 63% of the nominal power of the photovoltaic system, at time intervals in the order of seconds. The study covers the application of 3 techniques to reduce power fluctuations at the point of common coupling (PCC), with the incorporation of energy storage systems, under the same irradiance conditions. Supercapacitors were used as the storage system, which were selected for their high efficiency and useful life. A state of charge control is also applied by means of a hysteresis band. The three algorithms studied show similar behaviors; however, the ramp control technique has the best performance. The storage system was dimensioned based on the photovoltaic system’s nominal power and the desired rate of change in the PCC, whose capacity can be estimated from Pnom/12 [kWh] and a maximum power that can reach up to 0.63 Pnom. The study determines that based on the storage capacity and the irradiance characteristics under study, the storage system could use at least 5.76 daily charge/discharge cycles. In the study, it is possible to reduce the rate of change of the photovoltaic energy injected into the PCC about 6.66 times with the use of the proposed energy storage system.


Author(s):  
Michal Frivaldsky ◽  
Jan Morgos

In this article, the electrical properties, as well as the economic aspects of the modular and non-modular solution of the DC-DC photovoltaic converter for DC microgrid subsystem, are described. Principally a theoretical overview of the circuit configuration for the selected DC-DC stage of the DC microgrid system is shown. It is dealt with the comparison of the one non-modular high - voltage SiC-based dual - interleaved converter operating at the low switching frequency and with modular low voltage GaN-based DC-DC converters operating at high switching frequencies. The main focus is given to the research of the dependency that arises from the different module count, overall efficiency, costs, and power density (system volume). High efficiency, reduced overall volume, and maximum power density are important factors within modern and progressive solar systems. It is assumed that with the increase of switching frequency within the modular system the volume reduction of the passive components will be highly demanded, thus PCB dimensions and overall volume can be reduced. This dependency is investigated, while the total volume of the non-modular system is a unit of the measure. For these purposes, the design of variant solution was done, and consequently mutually compared in the way of simulations and experimental measurements.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5832
Author(s):  
Sang-Jae Choi ◽  
Sung-Hun Lim

Due to the increase in DC load and DC Power generation, the need for DC power system is emerging. Accordingly, FRT (fault ride through) and LVRT (low voltage ride through), which are related regulations for renewable energy sources, have been enacted, and operation algorithms of each converter are required for this. However, the operation of the converter according to LVRT regulations causes DC voltage fluctuations. In the current study, DC voltage fluctuation is suppressed through converter control of DC-linked battery. The controller was designed from the relational equation between DC voltage and instantaneous power of battery. The pattern of DC voltage fluctuations to the output of the PV (photovoltaic), which is a DC power generation source, was confirmed, and voltage fluctuation suppression was verified by applying the designed converter cooperation algorithm and controller.


2014 ◽  
Vol 25 (2) ◽  
pp. 9-14 ◽  
Author(s):  
Gilbert M. Bokanga ◽  
Atanda Raji ◽  
Mohammed T.E. Kahn

This project entails the design of a low voltage DC microgrid system for rural electrification in South Africa. Solar energy is freely available, environmental friendly and it is considered as a promising power generating source due to its availability and topological advantages for local power generation. Off-grid solar systems are perceived to be a viable means of power delivery to households in rural outlying areas in South Africa as solar panels can be used almost anywhere in the country. The design presented in this paper is based on the power demand estimation, photovoltaic panel selection, battery sizing and wire selection for the distribution system.


Author(s):  
Marek Malecki ◽  
J. Victor Small ◽  
James Pawley

The relative roles of adhesion and locomotion in malignancy have yet to be clearly established. In a tumor, subpopulations of cells may be recognized according to their capacity to invade neighbouring tissue,or to enter the blood stream and metastasize. The mechanisms of adhesion and locomotion are themselves tightly linked to the cytoskeletal apparatus and cell surface topology, including expression of integrin receptors. In our studies on melanomas with Fluorescent Microscopy (FM) and Cell Sorter(FACS), we noticed that cells in cultures derived from metastases had more numerous actin bundles, then cells from primary foci. Following this track, we attempted to develop technology allowing to compare ultrastructure of these cells using correlative Transmission Electron Microscopy(TEM) and Low Voltage Scanning Electron Microscopy(LVSEM).


Author(s):  
Marek Malecki ◽  
James Pawley ◽  
Hans Ris

The ultrastructure of cells suspended in physiological fluids or cell culture media can only be studied if the living processes are stopped while the cells remain in suspension. Attachment of living cells to carrier surfaces to facilitate further processing for electron microscopy produces a rapid reorganization of cell structure eradicating most traces of the structures present when the cells were in suspension. The structure of cells in suspension can be immobilized by either chemical fixation or, much faster, by rapid freezing (cryo-immobilization). The fixation speed is particularly important in studies of cell surface reorganization over time. High pressure freezing provides conditions where specimens up to 500μm thick can be frozen in milliseconds without ice crystal damage. This volume is sufficient for cells to remain in suspension until frozen. However, special procedures are needed to assure that the unattached cells are not lost during subsequent processing for LVSEM or HVEM using freeze-substitution or freeze drying. We recently developed such a procedure.


Author(s):  
T. Miyokawa ◽  
S. Norioka ◽  
S. Goto

Field emission SEMs (FE-SEMs) are becoming popular due to their high resolution needs. In the field of semiconductor product, it is demanded to use the low accelerating voltage FE-SEM to avoid the electron irradiation damage and the electron charging up on samples. However the accelerating voltage of usual SEM with FE-gun is limited until 1 kV, which is not enough small for the present demands, because the virtual source goes far from the tip in lower accelerating voltages. This virtual source position depends on the shape of the electrostatic lens. So, we investigated several types of electrostatic lenses to be applicable to the lower accelerating voltage. In the result, it is found a field emission gun with a conical anode is effectively applied for a wide range of low accelerating voltages.A field emission gun usually consists of a field emission tip (cold cathode) and the Butler type electrostatic lens.


Author(s):  
E. F. Lindsey ◽  
C. W. Price ◽  
E. L. Pierce ◽  
E. J. Hsieh

Columnar structures produced by DC magnetron sputtering can be altered by using RF biased sputtering or by exposing the film to nitrogen pulses during sputtering, and these techniques are being evaluated to refine the grain structure in sputtered beryllium films deposited on fused silica substrates. Beryllium is brittle, and fractures in sputtered beryllium films tend to be intergranular; therefore, a convenient technique to analyze grain structure in these films is to fracture the coated specimens and examine them in an SEM. However, fine structure in sputtered deposits is difficult to image in an SEM, and both the low density and the low secondary electron emission coefficient of beryllium seriously compound this problem. Secondary electron emission can be improved by coating beryllium with Au or Au-Pd, and coating also was required to overcome severe charging of the fused silica substrate even at low voltage. The coating structure can obliterate much of the fine structure in beryllium films, but reasonable results were obtained by using the high-resolution capability of an Hitachi S-800 SEM and either ion-beam coating with Au-Pd or carbon coating by thermal evaporation.


Sign in / Sign up

Export Citation Format

Share Document