The Rough Inhalable Ciprofloxacin Hydrochloride Microparticles Based on Silk Fibroin for Non-Cystic Fibrosis Bronchiectasis Therapy with Good Biocompatibility

Author(s):  
Ling Lin ◽  
Yixian Zhou ◽  
Guilan Quan ◽  
Xin Pan ◽  
Chuanbin Wu
Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1774 ◽  
Author(s):  
Haoran Zhang ◽  
Juntao Zhao ◽  
Tieling Xing ◽  
Shenzhou Lu ◽  
Guoqiang Chen

Silk fibroin (SF) is a natural material with good biocompatibility and excellent mechanical properties, which are complementary to graphene with ultrahigh electrical conductivity. In this study, to maximally combine graphene and silk fibroin, a well-dispersed silk fibroin/graphene suspension was successfully prepared in a simple and effective way. Then we prepared a flexible conductive SF/graphene film with a minimum resistance of 72.1 ± 4.7 Ω/sq by the casting method. It was found that the electrical conductivity of the SF/graphene film was related to the water content of the film, and the variation was more than 200 times. Therefore, it will play an important role in the field of humidity sensors. It also has excellent mechanical properties in both wet and dry states. These unique features make this material a promising future in the fields of biomedical applications, wearable sensors, and implantable internal sensors.


Author(s):  
Li-Min Yu ◽  
Tao Liu ◽  
Yu-Long Ma ◽  
Feng Zhang ◽  
Yong-Can Huang ◽  
...  

Interest is rapidly growing in the design and preparation of bioactive scaffolds, mimicking the biochemical composition and physical microstructure for tissue repair. In this study, a biomimetic biomaterial with nanofibrous architecture composed of silk fibroin and hyaluronic acid (HA) was prepared. Silk fibroin nanofiber was firstly assembled in water and then used as the nanostructural cue; after blending with hyaluronan (silk:HA = 10:1) and the process of freeze-drying, the resulting composite scaffolds exhibited a desirable 3D porous structure and specific nanofiber features. These scaffolds were very porous with the porosity up to 99%. The mean compressive modulus of silk-HA scaffolds with HA MW of 0.6, 1.6, and 2.6 × 106 Da was about 28.3, 30.2, and 29.8 kPa, respectively, all these values were much higher than that of pure silk scaffold (27.5 kPa). This scaffold showed good biocompatibility with bone marrow mesenchymal stem cells, and it enhanced the cellular proliferation significantly when compared with the plain silk fibroin. Collectively, the silk-hyaluronan composite scaffold with a nanofibrous structure and good biocompatibility was successfully prepared, which deserved further exploration as a biomimetic platform for mesenchymal stem cell-based therapy for tissue repair.


2012 ◽  
Vol 535-537 ◽  
pp. 2357-2360
Author(s):  
Huan Yu Jin ◽  
Yu Liu ◽  
Xing Liu ◽  
Da Peng Wang ◽  
Jian Liu ◽  
...  

Because of the good biocompatibility, silk fibroin is widely applied in the biomedical area. However, a few of sensitive persons still have the allergic effect after receiving the recovery treatments involving the silk fibroin used. In present research, we had the SD rat dermal cells cultured on the silk fibroin film (irradiated by gamma ray with the doses of 25kGy and 50kGy) and tested the cell grown curve and proliferation activity of the cells in the silk fibroin extracts from the CCK-8 test kit. The result showed that the cells cultured on the 50kGy-irradiated film grown more quickly than that on the 25kGy-irradiated film and the control. Moreover, cells in the 50kGy-irradiated film extract had the most proliferation activity. In conclusion, the results indicated that the silk fibroin irradiated with higher gamma ray dose could stimulate the cells growth and proliferation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiachen Sun ◽  
Lang Li ◽  
Fei Xing ◽  
Yun Yang ◽  
Min Gong ◽  
...  

Abstract Background The invasive and complicated procedures involving the use of traditional stem cells limit their application in bone tissue engineering. Cell-free, tissue-engineered bones often have complex scaffold structures and are usually engineered using several growth factors (GFs), thus leading to costly and difficult preparations. Urine-derived stem cells (USCs), a type of autologous stem cell isolated noninvasively and with minimum cost, are expected to solve the typical problems of using traditional stem cells to engineer bones. In this study, a graphene oxide (GO)-modified silk fibroin (SF)/nanohydroxyapatite (nHA) scaffold loaded with USCs was developed for immunomodulation and bone regeneration. Methods The SF/nHA scaffolds were prepared via lyophilization and cross-linked with GO using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxy succinimide (NHS). Scaffolds containing various concentrations of GO were characterized using scanning electron microscopy (SEM), the elastic modulus test, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectrometer (XPS). Examinations of cell adhesion, proliferation, viability, morphology, alkaline phosphatase activity, and osteogenesis-related gene expression were performed to compare the osteogenesis-related biological behaviors of USCs cultured on the scaffolds. The effect of USC-laden scaffolds on the differentiation of macrophages was tested using ELISA, qRT-PCR, and immunofluorescence staining. Subcutaneous implantations in rats were performed to evaluate the inflammatory response of the USC-laden scaffolds after implantation. The scaffolds loaded with USCs were implanted into a cranial defect model in rats to repair bone defects. Micro-computed tomography (μCT) analyses and histological evaluation were performed to evaluate the bone repair effects. Results GO modification enhanced the mechanical properties of the scaffolds. Scaffolds containing less than 0.5% GO had good biocompatibility and promoted USC proliferation and osteogenesis. The scaffolds loaded with USCs induced the M2-type differentiation and inhibited the M1-type differentiation of macrophages. The USC-laden scaffolds containing 0.1% GO exhibited the best capacity for promoting the M2-type differentiation of macrophages and accelerating bone regeneration and almost bridged the site of the rat cranial defects at 12 weeks after surgery. Conclusions This composite system has the capacity for immunomodulation and the promotion of bone regeneration and shows promising potential for clinical applications of USC-based, tissue-engineered bones.


2020 ◽  
Vol 8 (27) ◽  
pp. 5845-5848
Author(s):  
Yajie Zhang ◽  
Yi Cao ◽  
Liwei Zhang ◽  
Hongbo Zhao ◽  
Tianyu Ni ◽  
...  

A fast-forming BMSC-encapsulated DN hydrogel with a fast gelation rate, good biocompatibility and strong mechanical strength was fabricated via ultrasonically induced SF and bioorthogonal reaction crosslinking.


2020 ◽  
Vol 8 (5) ◽  
pp. 358-371
Author(s):  
Shihe Long ◽  
Yun Xiao ◽  
Xingdong Zhang

: As a natural biomaterial, silk fibroin (SF) holds great potential in biomedical applications with its broad availability, good biocompatibility, high mechanical strength, ease of fabrication, and controlled degradation. With emerging fabrication methods, nanoand microspheres made from SF have brought about unique opportunities in drug delivery, cell culture, and tissue engineering. For these applications, the size and distribution of silk fibroin particles (SFPs) are critical and require precise control during fabrication. Herein, we review common and emerging SFPs fabrication methods and their biomedical applications, and also the challenges and opportunities for SFPs in the near future. : Lay Summary: The application of silk in textile has an extraordinarily long history and new biomedical applications emerged owing to the good biocompatibility and versatile fabrication options of its major protein component, silk fibroin. With the development of nanotechnology and microfabrication, silk fibroin has been fabricated into nano- or microspheres with precisely controlled shape and distribution. In this review, we summarize common and emerging silk fibroin particle fabrication methods and their biomedical applications, and also discuss their challenges and opportunities in the nearest future.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 504 ◽  
Author(s):  
Qiusheng Wang ◽  
Guocong Han ◽  
Shuqin Yan ◽  
Qiang Zhang

Three-dimensional (3D) printing is regarded as a critical technological-evolution in material engineering, especially for customized biomedicine. However, a big challenge that hinders the 3D printing technique applied in biomedical field is applicable bioink. Silk fibroin (SF) is used as a biomaterial for decades due to its remarkable high machinability and good biocompatibility and biodegradability, which provides a possible alternate of bioink for 3D printing. In this review, we summarize the requirements, characteristics and processabilities of SF bioink, in particular, focusing on the printing possibilities and capabilities of bioink. Further, the current achievements of cell-loading SF based bioinks were comprehensively viewed from their physical properties, chemical components, and bioactivities as well. Finally, the emerging issues and prospects of SF based bioink for 3D printing are given. This review provides a reference for the programmable and multiple processes and the further improvement of silk-based biomaterials fabrication by 3D printing.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 366
Author(s):  
Tze-Wen Chung ◽  
Chun-Yi Chang ◽  
Chun-Ning Chang ◽  
Chiu-Hsun Liao ◽  
Yun-Jen Jan ◽  
...  

A silk fibroin composite film that can simultaneously scavenge and probe H2O2 in situ was developed for possibly examining local concentrations of H2O2 for biomedical applications. A multi-functional composite film (GDES) that consists of graphene oxide (G), a photothermally responsive element that was blended with polydopamine (PDA, D)/horseradish peroxidase (HRP, E) (or DE complex), and then GDE microaggregates were coated with silk fibroin (SF, S), a tyrosine-containing protein. At 37 °C, the H2O2-scavenging ability of a GDES film in solution at approximately 7.5 × 10−3 μmol H2O2/mg film was the highest compared with those of S and GS films. The intensities of UV-excitable blue fluorescence of a GDES film linearly increased with increasing H2O2 concentrations from 4.0 μM to 80 μM at 37 °C. Interestingly, after a GDES film scavenged H2O2, the UV-excitable blue fluorescent film could be qualitatively monitored by eye, making the film an eye-probe H2O2 sensor. A GDES film enabled to heat H2O2-containing samples to 37 °C or higher by the absorption of near-IR irradiation at 808 nm. The good biocompatibility of a GDES film was examined according to the requirements of ISO-10993-5. Accordingly, a GDES film was developed herein to scavenge and eye-probe H2O2 in situ and so it has potential for biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document