scholarly journals Pyrolysis of pellets prepared from pure and blended biomass feedstocks: Characterization and analysis of pellets quality

Author(s):  
Asif Ali Siyal ◽  
Yang Liu ◽  
Babar Ali ◽  
Xiao Mao ◽  
Sakhawat Hussain ◽  
...  
Keyword(s):  
2021 ◽  
Vol 297 ◽  
pp. 126645
Author(s):  
Gajanan Sampatrao Ghodake ◽  
Surendra Krushna Shinde ◽  
Avinash Ashok Kadam ◽  
Rijuta Ganesh Saratale ◽  
Ganesh Dattatraya Saratale ◽  
...  

Fuel ◽  
2021 ◽  
Vol 302 ◽  
pp. 121166
Author(s):  
Fatih Güleç ◽  
Luis Miguel Garcia Riesco ◽  
Orla Williams ◽  
Emily T. Kostas ◽  
Abby Samson ◽  
...  

2021 ◽  
Vol 3 (1) ◽  
pp. 243-259
Author(s):  
Yadhu N. Guragain ◽  
Praveen V. Vadlani

Lignocellulosic biomass feedstocks are promising alternatives to fossil fuels for meeting raw material needs of processing industries and helping transit from a linear to a circular economy and thereby meet the global sustainability criteria. The sugar platform route in the biochemical conversion process is one of the promising and extensively studied methods, which consists of four major conversion steps: pretreatment, hydrolysis, fermentation, and product purification. Each of these conversion steps has multiple challenges. Among them, the challenges associated with the pretreatment are the most significant for the overall process because this is the most expensive step in the sugar platform route and it significantly affects the efficiency of all subsequent steps on the sustainable valorization of each biomass component. However, the development of a universal pretreatment method to cater to all types of feedstock is nearly impossible due to the substantial variations in compositions and structures of biopolymers among these feedstocks. In this review, we have discussed some promising pretreatment methods, their processing and chemicals requirements, and the effect of biomass composition on deconstruction efficiencies. In addition, the global biomass resources availability and process intensification ideas for the lignocellulosic-based chemical industry have been discussed from a circularity and sustainability standpoint.


2021 ◽  
Vol 13 (4) ◽  
pp. 2027
Author(s):  
Md. Emdadul Hoque ◽  
Fazlur Rashid ◽  
Muhammad Aziz

Synthetic gas generated from the gasification of biomass feedstocks is one of the clean and sustainable energy sources. In this work, a fixed-bed downdraft gasifier was used to perform the gasification on a lab-scale of rice husk, sawdust, and coconut shell. The aim of this work is to find and compare the synthetic gas generation characteristics and prospects of sawdust and coconut shell with rice husk. A temperature range of 650–900 °C was used to conduct gasification of these three biomass feedstocks. The feed rate of rice husk, sawdust, and coconut shell was 3–5 kg/h, while the airflow rate was 2–3 m3/h. Experimental results show that the highest generated quantity of methane (vol.%) in synthetic gas was achieved by using coconut shell than sawdust and rice husk. It also shows that hydrogen production was higher in the gasification of coconut shell than sawdust and rice husk. In addition, emission generations in coconut shell gasification are lower than rice husk although emissions of rice husk gasification are even lower than fossil fuel. Rice husk, sawdust, and coconut shell are cost-effective biomass sources in Bangladesh. Therefore, the outcomes of this paper can be used to provide clean and economic energy sources for the near future.


2021 ◽  
Vol 9 (4) ◽  
pp. 105415
Author(s):  
Maryam Akbari ◽  
Adetoyese Olajire Oyedun ◽  
Eskinder Gemechu ◽  
Amit Kumar

2021 ◽  
Vol 9 (5) ◽  
pp. 1079
Author(s):  
Alec Banner ◽  
Helen S. Toogood ◽  
Nigel S. Scrutton

The long road from emerging biotechnologies to commercial “green” biosynthetic routes for chemical production relies in part on efficient microbial use of sustainable and renewable waste biomass feedstocks. One solution is to apply the consolidated bioprocessing approach, whereby microorganisms convert lignocellulose waste into advanced fuels and other chemicals. As lignocellulose is a highly complex network of polymers, enzymatic degradation or “saccharification” requires a range of cellulolytic enzymes acting synergistically to release the abundant sugars contained within. Complications arise from the need for extracellular localisation of cellulolytic enzymes, whether they be free or cell-associated. This review highlights the current progress in the consolidated bioprocessing approach, whereby microbial chassis are engineered to grow on lignocellulose as sole carbon sources whilst generating commercially useful chemicals. Future perspectives in the emerging biofoundry approach with bacterial hosts are discussed, where solutions to existing bottlenecks could potentially be overcome though the application of high throughput and iterative Design-Build-Test-Learn methodologies. These rapid automated pathway building infrastructures could be adapted for addressing the challenges of increasing cellulolytic capabilities of microorganisms to commercially viable levels.


2020 ◽  
Vol 12 (11) ◽  
pp. 4595
Author(s):  
Jennifer Attard ◽  
Helena McMahon ◽  
Pat Doody ◽  
Johan Belfrage ◽  
Catriona Clark ◽  
...  

The bioeconomy can play a critical role in helping countries to find alternative sustainable sources of products and energy. Countries with diverse terrestrial and marine ecosystems will see diverging feedstock opportunities to develop these new value chains. Understanding the sources, composition, and regional availability of these biomass feedstocks is an essential first step in developing new sustainable bio-based value chains. In this paper, an assessment and analysis of regional biomass availability was conducted in the diverse regions of Andalusia and Ireland using a bioresource mapping model. The model provides regional stakeholders with a first glance at the regional opportunities with regards to feedstock availability and an estimate of the transportation costs associated with moving the feedstock to a different modelled location/region for the envisioned biorefinery plant. The analysis found that there were more than 30 million tonnes of (wet weight) biomass arisings from Ireland (84,000 km2) with only around 4.8 million tonnes from the Andalusian region (87,000 km2). The study found that Cork in Ireland stood out as the main contributor of biomass feedstock in the Irish region, with animal manures making the largest contribution. Meanwhile, the areas of Almería, Jaén, and Córdoba were the main contributors of biomass in the Andalusia region, with olive residues identified as the most abundant biomass resource. This analysis also found that, while considerable feedstock divergence existed within the regions, the mapping model could act as an effective tool for collecting and interpreting the regional data on a transnational basis.


Fuel ◽  
2021 ◽  
Vol 293 ◽  
pp. 120409
Author(s):  
Dongdong Feng ◽  
Dawei Guo ◽  
Qi Shang ◽  
Yijun Zhao ◽  
Linyao Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document