Effects of amine (APTES) and thiol (MPTMS) silanes-functionalized ZnO NPs on the structural, morphological and, selective sonophotocatalysis of mixed pollutants: Box–Behnken design (BBD)

2022 ◽  
Vol 896 ◽  
pp. 163121
Author(s):  
Reza Mahdavi ◽  
S. Siamak Ashraf Talesh
Keyword(s):  
Zno Nps ◽  
2021 ◽  
Author(s):  
Rania Farouq ◽  
Ehsan Kh. Ismaeel ◽  
Aliaa M. Monazie

Abstract The present study is set out to determine the photocatalytic degradation potential of ZnO nanoparticles for effective degradation of Eosin dye. The heterogeneous photocatalytic experiments were carried out by irradiating aqueous dye solutions with ultraviolet light. The influence of effective parameters like flow rate, pH, catalyst dose, and dye concentration was examined. The best degradation efficiency (66.82%) of ZnO Nanoparticles against Eosin dye was achieved within 90 min of reaction time. The Box–Behnken design under the Response Surface Methodology (RSM) was chosen as a statistical tool to obtain the correlation of influential parameters. The optimum values were recorded as follows: 0.59 g, 15.75 ppm and 136.12 ml/min for amount of catalyst, dye concentration and flow rate, respectively. The maximum percent degradation achieved at these conditions was 71.44%.


2021 ◽  
Author(s):  
R. Mary Nancy Flora ◽  
S. Palani ◽  
J. Sharmila ◽  
M.CHAMUNDEESWARI M

Abstract A green strategy and cost-effective approach was adapted to prepare Zinc oxide quantum dots (ZnO-QDs) for biomedical applications. The prepared ZnO-QDs may hold great promise as sensing scanners for diagnostics and therapy, as demonstrated in our current study. Zinc Sulphate, Azadirachta indica, and Catharanthus roseus leaves extract were used to synthesis a novel natural Zinc oxide bionanocomposite (ZnO-BC) and used as a precursor to prepare ZnO-QDs by microwave-assisted technique. The ZnO-BC was characterized by SEM-EDX, FTIR, XRD, Zeta potential and particle size analysis. The optical properties of QDs were investigated using UV and PL spectrophotometers. Experimental factors like the concentrations of ZnO-NPs, C. roseus and A. verawere evaluated using Box-Behnken design (BBD). MTT and haemolysis assay was performed using ZnO-BC and ZnO-QDs. Maximum absorbance observed at optimized values of 0.5% ZnO-NPs, 1g A.vera gel and 0.5ml C.roseus leaf extract of ZnO-QDs against BBD. There was decreased viability rate, ranging from 60-15% for 0.5mg/ml ZnO-BC and 45-5% for 5 mg/ml ZnO-QDs which revealed a tenfold decrease in cell viability with less concentration scale for 5mg/ml of ZnO-QDs when compared with that of 0.5 mg/ml ZnO-BC. Also, hemolysis test shows that the hemolysis ratio was below 0.5%, indicating non-haemolysis of ZnO-QDs. cellular morphology by results was supported by phase-contrast microscopy images. A good biocompatibility and high anticancer activity was noticed for ZnO-QDs when compared to ZnO-BC and provide versatile applications in the field of Nano biomedicine.


2013 ◽  
Vol 12 (12) ◽  
pp. 2371-2383
Author(s):  
Krishnaswamy Usharani ◽  
Perumalsamy Lakshmanaperumalsamy ◽  
Muthusamy Muthukumar

2019 ◽  
Vol 1 (2) ◽  
pp. 1-11
Author(s):  
Gobi Nallathambi ◽  
Hazel Dhinakaran

Air separation is a process of separating primary components from the atmospheric air. Development of membrane technologies plays a key role in air separation. Multi-layer polymeric nanocomposite membranes have been developed by a novel technique using Polyacrylonitrile (PAN) and cellulose acetate (CA) along with nano silica particles (SiO2) to obtain a higher oxygen selectivity and permeability. For the construction of the multilayer membrane, the Box-Behnken design has been used by employing three independent variables namely PAN Electro spinning time, the SiO2 percentage in the PAN polymer and CA/PEG polymer concentration. The developed membranes have been characterized for its surface morphology and physical properties. Along with the analysis of compound desirability, the results were also subject to statistical analysis in order to form regression equations. The electro spun fiber diameter increases along with the concentration of SiO2 nanoparticles and the range is from 50 nm to 400 nm. Moreover, the maximum pore size on the surface of the membrane lies between 200 to 400 nm whereas the maximum percentage of oxygen purity obtained is 48 with the permeate flux of 5.45 cm3/cm2/min.


2017 ◽  
Vol 68 (2) ◽  
pp. 331-336
Author(s):  
Gabriela Isopencu ◽  
Mirela Marfa ◽  
Iuliana Jipa ◽  
Marta Stroescu ◽  
Anicuta Stoica Guzun ◽  
...  

Nigella sativa, also known as black cumin, an annual herbaceous plant growing especially in Mediterranean countries, has recently gained considerable interest not only for its use as spice and condiment but also for its healthy properties of the fixed and essential oil and its potential as a biofuel. Nigella sativa seeds fixed oil, due to its high content in linoleic acid followed by oleic and palmitic acid, could be beneficial to human health. The objective of this study is to determine the optimum conditions for the solvent extraction of Nigella sativa seeds fixed oil using a three-level, three-factor Box-Behnken design (BBD) under response surface methodology (RSM). The obtained experimental data, fitted by a second-order polynomial equation were analysed by Pareto analysis of variance (ANOVA). From a total of 10 coefficients of the statistical model only 5 are important. The obtained experimental values agreed with the predicted ones.


2019 ◽  
Vol 20 (7) ◽  
pp. 542-550 ◽  
Author(s):  
Nahla S. El-Shenawy ◽  
Reham Z. Hamza ◽  
Fawziah A. Al-Salmi ◽  
Rasha A. Al-Eisa

Background: Zinc oxide nanoparticles (ZnO NPs) are robustly used biomedicine. Moreover, no study has been conducted to explore the consequence of green synthesis of ZnO NPs with Camellia sinensis (green tea extract, GTE) on kidneys of rats treated with monosodium glutamate (MSG). Methods: Therefore, the objective of the research was designed to explore the possible defensive effect of GTE/ZnO NPs against MSG-induced renal stress investigated at redox and histopathological points. Results: The levels of urea and creatinine increased as the effect of a high dose of MSG, in addition, the myeloperoxidase and xanthine oxidase activates were elevated significantly with the high dose of MSG. The levels of non-enzymatic antioxidants (uric acid, glutathione, and thiol) were decreased sharply in MSG-treated rats as compared to the normal group. Conclusion: The data displayed that GTE/ZnO NPs reduced the effects of MSG significantly by reduction of the level peroxidation and enhancement intracellular antioxidant. These biochemical findings were supported by histopathology evaluation, which showed minor morphological changes in the kidneys of rats.


Author(s):  
Mohammad Faizan ◽  
Fangyuan Yu ◽  
Chen Chen ◽  
Ahmad Faraz ◽  
Shamsul Hayat

: Abiotic stresses arising from atmosphere change belie plant growth and yield, leading to food reduction. The cultivation of a large number of crops in the contaminated environment is a main concern of environmentalists in the present time. To get food safety, a highly developed nanotechnology is a useful tool for promoting food production and assuring sustainability. Nanotechnology helps to better production in agriculture by promoting the efficiency of inputs and reducing relevant losses. This review examines the research performed in the past to show how zinc oxide nanoparticles (ZnO-NPs) are influencing the negative effects of abiotic stresses. Application of ZnO-NPs is one of the most effectual options for considerable enhancement of agricultural yield globally under stressful conditions. ZnO-NPs can transform the agricultural and food industry with the help of several innovative tools in reversing oxidative stress symptoms induced by abiotic stresses. In addition, the effect of ZnO-NPs on physiological, biochemical, and antioxidative activities in various plants have also been examined properly. This review summarizes the current understanding and the future possibilities of plant-ZnO-NPs research.


Sign in / Sign up

Export Citation Format

Share Document