scholarly journals Production of recombinant thanatin in watery rice seeds that lack an accumulation of storage starch and proteins

2016 ◽  
Vol 219 ◽  
pp. 28-33 ◽  
Author(s):  
Tomohiro Imamura ◽  
Ken-Taro Sekine ◽  
Tetsuro Yamashita ◽  
Hiroaki Kusano ◽  
Hiroaki Shimada
Keyword(s):  
2013 ◽  
Vol 38 (9) ◽  
pp. 1665-1671
Author(s):  
Qun-Wen HU ◽  
Xia XIN ◽  
Xiao-Ling CHEN ◽  
Xu LIU ◽  
Xin-Xiong LU

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sheila Bigolin Teixeira ◽  
Stefânia Nunes Pires ◽  
Gabriele Espinel Ávila ◽  
Bruna Evelyn Paschoal Silva ◽  
Victoria Novo Schmitz ◽  
...  

AbstractRice is a crop that presents sensitivity to cold, especially in the germination phase, which leads to high economic losses. Alternative management forms are essential to increase tolerance to low temperatures, and seed priming represents a promising tool. The objective of this study was to investigate the priming effect of the aqueous extract of carrot roots on rice seeds to increase tolerance to low temperatures during germination. Seeds from cultivars BRS Querência (cold-susceptible) and Brilhante (cold-tolerant) were soaked for 24 h in concentrations of 0, 25, 50, and 100% carrot extract, sown on germitest paper and conditioned in BOD for 21 days at 15 °C. As a control, the seeds soaked in water were also germinated at 25 °C. They were evaluated for germination, first germination count, and germination speed index to calculate the stress indices: tolerance index, susceptibility index, and harmonic mean. They were also evaluated for the length and dry mass of shoot and root. The results showed that the rice seeds conditioning in carrot extract effectively reduces the damage caused by cold, significantly increasing the germination speed and the percentage of final germination and the growth evaluations, more expressive at 100% concentration. The stress indexes are efficient in estimating the tolerance of the cultivars and the effect of the different conditions in low-temperature conditions, highlighting the superiority of the Brilhante cultivar.


Author(s):  
Anju Bala Sharma ◽  
Atul Kumar ◽  
Shaily Javeria
Keyword(s):  

2021 ◽  
Vol 137 ◽  
pp. 106861
Author(s):  
Deepa Joshi ◽  
Ankit Butola ◽  
Sheetal Raosaheb Kanade ◽  
Dilip K. Prasad ◽  
S.V. Amitha Mithra ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. K. Prasannakumar ◽  
P. Buela Parivallal ◽  
Devanna Pramesh ◽  
H. B. Mahesh ◽  
Edwin Raj

AbstractRice blast (caused by Magnaporthe oryzae) and sheath rot diseases (caused by Sarocladium oryzae) are the most predominant seed-borne pathogens of rice. The detection of both pathogens in rice seed is essential to avoid production losses. In the present study, a microdevice platform was designed, which works on the principles of loop-mediated isothermal amplification (LAMP) to detect M. oryzae and S. oryzae in rice seeds. Initially, a LAMP, polymerase chain reaction (PCR), quantitative PCR (qPCR), and helicase dependent amplification (HDA) assays were developed with primers, specifically targeting M. oryzae and S. oryzae genome. The LAMP assay was highly efficient and could detect the presence of M. oryzae and S. oryzae genome at a concentration down to 100 fg within 20 min at 60 °C. Further, the sensitivity of the LAMP, HDA, PCR, and qPCR assays were compared wherein; the LAMP assay was highly sensitive up to 100 fg of template DNA. Using the optimized LAMP assay conditions, a portable foldable microdevice platform was developed to detect M. oryzae and S. oryzae in rice seeds. The foldable microdevice assay was similar to that of conventional LAMP assay with respect to its sensitivity (up to 100 fg), rapidity (30 min), and specificity. This platform could serve as a prototype for developing on-field diagnostic kits to be used at the point of care centers for the rapid diagnosis of M. oryzae and S. oryzae in rice seeds. This is the first study to report a LAMP-based foldable microdevice platform to detect any plant pathogens.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ling Su ◽  
Jing Yang ◽  
Dandan Li ◽  
Ziai Peng ◽  
Aoyun Xia ◽  
...  

Abstract Background In Asian rice production, an increasing number of countries now choose the direct seeding mode because of rising costs, labour shortages and water shortages. The ability of rice seeds to undergo anaerobic germination (AG) plays an important role in the success of direct seeding. Results In this study, we used 2,123,725 single nucleotide polymorphism (SNP) markers based on resequencing to conduct a dynamic genome-wide association study (GWAS) of coleoptile length (CL) and coleoptile diameter (CD) in 209 natural rice populations. A total of 26 SNP loci were detected in these two phenotypes, of which 5 overlapped with previously reported loci (S1_ 39674301, S6_ 20797781, S7_ 18722403, S8_ 9946213, S11_ 19165397), and two sites were detected repeatedly at different time points (S3_ 24689629 and S5_ 27918754). We suggest that these 7 loci (−log10 (P) value > 7.3271) are the key sites that affect AG tolerance. To screen the candidate genes more effectively, we sequenced the transcriptome of the flooding-tolerant variety R151 in six key stages, including anaerobic (AN) and the oxygen conversion point (AN-A), and obtained high-quality differential expression profiles. Four reliable candidate genes were identified: Os01g0911700 (OsVP1), Os05g0560900 (OsGA2ox8), Os05g0562200 (OsDi19–1) and Os06g0548200. Then qRT-PCR and LC-MS/ MS targeting metabolite detection technology were used to further verify that the up-regulated expression of these four candidate genes was closely related to AG. Conclusion The four novel candidate genes were associated with gibberellin (GA) and abscisic acid (ABA) regulation and cell wall metabolism under oxygen-deficiency conditions and promoted coleoptile elongation while avoiding adverse effects, allowing the coleoptile to obtain oxygen, escape the low-oxygen environment and germinate rapidly. The results of this study improve our understanding of the genetic basis of AG in rice seeds, which is conducive to the selection of flooding-tolerant varieties suitable for direct seeding.


Sign in / Sign up

Export Citation Format

Share Document