scholarly journals Direct synthesis of H2O2 on PdZn nanoparticles: The impact of electronic modifications and heterogeneity of active sites

2018 ◽  
Vol 368 ◽  
pp. 261-274 ◽  
Author(s):  
Neil M. Wilson ◽  
Johanna Schröder ◽  
Pranjali Priyadarshini ◽  
Daniel T. Bregante ◽  
Sebastian Kunz ◽  
...  
Catalysts ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 8 ◽  
Author(s):  
Feng Feng ◽  
Yaqin Deng ◽  
Zheng Cheng ◽  
Xiaoliang Xu ◽  
Qunfeng Zhang ◽  
...  

The direct synthesis of benzimidazoles from 2-nitroaniline and ethanol over Cu-Pd/γ-Al2O3 catalysts has the advantages of requiring easily available starting materials, having high efficiency, and a simple procedure. The modification by Mg of the Cu-Pd/γ-Al2O3 catalyst could improve the catalytic activity significantly. The addition of Mg to the Cu-Pd/γ-Al2O3 catalyst could maintain and promote the formation of CuPd alloy active sites. Meanwhile, the basicity of the support was enhanced appropriately by Mg, which generated more basic sites (Al-Oδ−) to accelerate the dehydrogenation of alcohol and increased the rate of the whole coupled reaction. The 2-nitroaniline was completely converted over Cu-Pd/(Mg)γ-Al2O3 after reacting for six hours, and the yield of 2-methylbenzimidazole was 98.8%. The results of this work provide a simple method to develop a more efficient catalyst for the “alcohol-dehydrogenation, hydrogen transfer and hydrogenation” coupled reaction system.


2021 ◽  
Author(s):  
Kristian Klumpp ◽  
Claudia Marcolli ◽  
Thomas Peter

Abstract. Potassium-feldspars (K-feldspars), such as microcline, are considered key dust minerals inciting ice nucleation in mixed phase clouds. Besides the high ice nucleation activity of microcline, recent studies also revealed a high sensi-tivity of microcline towards interaction with solutes on its surface. Here, we investigate the effect of organic and bio-organic substances on the ice nucleation activity of microcline, with the aim to better understand the underlying sur-face interactions. We performed immersion freezing experiments with microcline in solutions of three carboxylic acids, five amino acids and two polyols to represent these compound classes. By means of a differential scanning calorimeter we investigated the freezing of emulsified droplets of microcline suspended in various solutions. Depend-ing on the type of solute, different effects were observed. In the case of carboxylic acids (acetic, oxalic and citric acid), the measured heterogeneous onset temperatures, Thet, showed no significant deviation from the behavior pre-dicted by the water activity criterion, Thet(aw) = Tmelt(aw+Δaw), which relates Thet with the melting point temperature Tmelt via a constant water activity offset Δaw. While this behavior could be interpreted as a lack of interaction of the solute molecules with the surface, the carboxylic acids caused the fraction of heterogeneously frozen water, Fhet(aw), to decrease by up to 40 % with increasing solute concentrations. In combination, unaltered Thet(aw) and reduced Fhet(aw) suggest that active sites were largely deactivated by the acid molecules, but amongst those remaining active are also the best sites with the highest Thet. A deviation from this behavior is citric acid, which showed not only a de-crease in Fhet, but also a decrease in Thet of up to 4 K for water activities below 0.99, pointing to a depletion of the best active sites by interactions with the citrate ions. When neutralized solutions of the acids were used instead, the de-crease in Fhet became even more pronounced. The slope of Thet(aw) was different for each of the neutralized acid solu-tions. In the case of amino acid solutions, we found a decrease in Thet (up to 10 K), significantly below the Δaw-criterion, as well as a reduction in Fhet (up to 60 %). Finally, in case of the investigated polyols, no significant devia-tion of Thet from the Δaw-criterion was observed, and no significant deviation of Fhet in comparison to a pure water suspension was found. Furthermore, we measured the effects of aging on the ice nucleation activity in experiments with microcline suspended in solutions for up to seven days, and tested the reversibility of the interaction with the solutes after aging for 10 days. For citric acid, an ongoing irreversible degradation of the ice nucleation activity was observed, whereas the amino acids showed completely reversible effects. In summary, our experiments demonstrate a remarkable sensitivity of microcline ice nucleation activity to surface interactions with various solutes, underscoring the importance of the history of such particles from source to frozen cloud droplet in the atmosphere.


2018 ◽  
Vol 8 (24) ◽  
pp. 6346-6359 ◽  
Author(s):  
Ji-Eun Min ◽  
Sungtak Kim ◽  
Geunjae Kwak ◽  
Yong Tae Kim ◽  
Seung Ju Han ◽  
...  

In a complex reaction system, in which gas, liquid, and solid catalysts work together, understanding the impact of mass transfer that varies with the catalyst pore structure is very challenging but also essential to designing selective catalysts.


mBio ◽  
2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Nam K. Tonthat ◽  
Praveen Rao Juvvadi ◽  
Hengshan Zhang ◽  
Soo Chan Lee ◽  
Ron Venters ◽  
...  

ABSTRACT Invasive fungal infections remain difficult to treat and require novel targeting strategies. The 12-kDa FK506-binding protein (FKBP12) is a ubiquitously expressed peptidyl-prolyl isomerase with considerable homology between fungal pathogens and is thus a prime candidate for future targeting efforts to generate a panfungal strategy. Despite decades of research on FKBPs, their substrates and mechanisms of action remain unclear. Here we describe structural, biochemical, and in vivo analyses of FKBP12s from the pathogenic fungi Candida albicans , Candida glabrata , and Aspergillus fumigatus . Strikingly, multiple apo A. fumigatus and C. albicans FKBP12 crystal structures revealed a symmetric, intermolecular interaction involving the deep insertion of an active-site loop proline into the active-site pocket of an adjacent subunit. Such interactions have not been observed in previous FKBP structures. This finding indicates the possibility that this is a self-substrate interaction unique to the A. fumigatus and C. albicans fungal proteins that contain this central proline. Structures obtained with the proline in the cis and trans states provide more data in support of self-catalysis. Moreover, cysteine cross-linking experiments captured the interacting dimer, supporting the idea that it forms in solution. Finally, genetic studies exploring the impact of mutations altering the central proline and an adjacent residue provide evidence that any dimeric state formed in vivo , where FKBP12 concentrations are low, is transient. Taken together, these findings suggest a unique mechanism of self-substrate regulation by fungal FKBP12s, lending further novel understanding of this protein for future drug-targeting efforts. IMPORTANCE FKBP12 is a cis-trans peptidyl-prolyl isomerase that plays key roles in cellular protein homeostasis. FKBP12s also bind the immunosuppressive drug FK506 to inhibit the phosphatase calcineurin (CaN). CaN is required for virulence of A. fumigatus , C. albicans , C. glabrata , and other deadly fungal pathogens, marking FKBP12 and CaN as potential broad-spectrum drug targets. Here we describe structures of fungal FKBP12s. Multiple apo A. fumigatus and C. albicans FKBP12 structures reveal the insertion of a proline, conspicuously conserved in these proteins, into the active sites of adjacent molecules. This suggests that these proteins might serve as their own substrates. Cysteine disulfide trapping experiments provide support for this self-interaction and hence possible intermolecular catalysis by these enzymes.


2020 ◽  
Vol 10 (3) ◽  
pp. 726-735
Author(s):  
Melissa M. Galey ◽  
Mark A. Miller ◽  
Mary Lanuza ◽  
Sesh Prabhakar ◽  
Christopher P. Nicholas

We directly synthesized one-dimensional zeolite UZM-55 as an aluminosilicate and catalyzed MTH to understand pore structure influence on catalytic properties.


RSC Advances ◽  
2015 ◽  
Vol 5 (108) ◽  
pp. 89273-89281 ◽  
Author(s):  
Shaopeng Tian ◽  
Sichen Wang ◽  
Yingquan Wu ◽  
Junwen Gao ◽  
Hongjuan Xie ◽  
...  

The isobutanol productivity is closely related to the cation disorder distribution.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3336
Author(s):  
Ilona Elisabeth Kammerl ◽  
Claudia Flexeder ◽  
Stefan Karrasch ◽  
Barbara Thorand ◽  
Margit Heier ◽  
...  

Dysfunction of the immunoproteasome has been implicated in cardiovascular and pulmonary diseases. Its potential as a biomarker for predicting disease stages, however, has not been investigated so far and population-based analyses on the impact of sex and age are missing. We here analyzed the activity of all six catalytic sites of the proteasome in isolated peripheral blood mononuclear cells obtained from 873 study participants of the KORA FF4 study using activity-based probes. The activity of the immuno- and standard proteasome correlated clearly with elevated leukocyte counts of study participants. Unexpectedly, we observed a strong sex dimorphism for proteasome activity with significantly lower immunoproteasome activity in women. In aging, almost all catalytic activities of the proteasome were activated in aged women while maintained upon aging in men. We also noted distinct sex-related activation patterns of standard and immunoproteasome active sites in chronic inflammatory diseases such as diabetes, cardiovascular diseases, asthma, or chronic obstructive pulmonary disease as determined by multiple linear regression modeling. Our data thus provides a conceptual framework for future analysis of immunoproteasome function as a bio-marker for chronic inflammatory disease development and progression.


2021 ◽  
Author(s):  
Azadeh Nazemi ◽  
Adam Steeves ◽  
Heather Kulik

The Mo/W containing metalloenzyme formate dehydrogenase (FDH) is an efficient and selective natural catalyst which reversibly converts CO2 to formate under ambient conditions. A greater understanding of the role of the protein environment in determining the local properties of the FDH active site would enable rational bioinspired catalyst design. In this study, we investigate the impact of the greater protein environment on the electrostatic potential (ESP) of the active site. To model the enzyme environment, we used a combination of long-timescale classical molecular dynamics (MD) and multiscale quantum-mechanical/molecular-mechanical (QM/MM) simulations. We leverage the charge shift analysis method to systematically construct QM regions and analyze the electronic environment of the active site by evaluating the degree of charge transfer between the core active site and the protein environment. The contribution of the terminal chalcogen ligand to the ESP of the metal center is substantial and dependent on the chalcogen identity, with ESPs less negative and similar for Se and S terminal chalcogens than for O regardless of whether the Mo6+ or W6+ metal center is present. Our evaluation reveals that the orientation of the sidechains and ligand conformations will alter the relative trends in the ESP observed for a given metal center or terminal chalcogen, highlighting the importance of sampling dynamic fluctuations in the protein. Overall, our observations suggest that the terminal chalcogen ligand identity plays an important role in the enzymatic activity of FDH.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 121
Author(s):  
Jiaqi Dong ◽  
Yue Zhang ◽  
Muhammad Irfan Hussain ◽  
Wenjie Zhou ◽  
Yingzhi Chen ◽  
...  

Graphitic carbon nitride (g-C3N4), as a polymeric semiconductor, is promising for ecological and economical photocatalytic applications because of its suitable electronic structures, together with the low cost, facile preparation, and metal-free feature. By modifying porous g-C3N4, its photoelectric behaviors could be facilitated with transport channels for photogenerated carriers, reactive substances, and abundant active sites for redox reactions, thus further improving photocatalytic performance. There are three types of methods to modify the pore structure of g-C3N4: hard-template method, soft-template method, and template-free method. Among them, the hard-template method may produce uniform and tunable pores, but requires toxic and environmentally hazardous chemicals to remove the template. In comparison, the soft templates could be removed at high temperatures during the preparation process without any additional steps. However, the soft-template method cannot strictly control the size and morphology of the pores, so prepared samples are not as orderly as the hard-template method. The template-free method does not involve any template, and the pore structure can be formed by designing precursors and exfoliation from bulk g-C3N4 (BCN). Without template support, there was no significant improvement in specific surface area (SSA). In this review, we first demonstrate the impact of pore structure on photoelectric performance. We then discuss pore modification methods, emphasizing comparison of their advantages and disadvantages. Each method’s changing trend and development direction is also summarized in combination with the commonly used functional modification methods. Furthermore, we introduce the application prospects of porous g-C3N4 in the subsequent studies. Overall, porous g-C3N4 as an excellent photocatalyst has a huge development space in photocatalysis in the future.


Sign in / Sign up

Export Citation Format

Share Document