scholarly journals Covalently and ionically, dually crosslinked chitosan nanoparticles block quorum sensing and affect bacterial cell growth on a cell-density dependent manner

2020 ◽  
Vol 578 ◽  
pp. 171-183
Author(s):  
C. Vila-Sanjurjo ◽  
L. Hembach ◽  
J. Netzer ◽  
C. Remuñán-López ◽  
A. Vila-Sanjurjo ◽  
...  
2019 ◽  
Author(s):  
Amudha Deepalakshmi Maharajan ◽  
Hilde Hansen ◽  
Nils Peder Willassen

Abstract Background Quorum Sensing (QS) is a cell to cell communication system, in which bacteria synthesize and respond to signaling molecules called autoinducers (AI). QS is cell density dependent and known to be involved in regulating virulence, motility and secretion systems to interact with the host or other bacteria. Aliivibrio wodanis is frequently isolated together with Moritella viscosa from the infected Atlantic salmon during outbreaks of the winter ulcer disease. M. viscosa is the main causative agent of the disease while the presence of A. wodanis is still unclear. It is hypothesized that A. wodanis might influence the progression of winter ulcer. The genome of A. wodanis 06/09/139 encodes two autoinducer synthase genes (ainS and luxS) and a master regulator litR. LitR homologs in other aliivibrios have been shown to regulate several phenotypes in a cell density dependent manner. Moreover, a previous study has shown that A. wodanis 06/09/139 produces only one AHL N-3-hydroxy-decanoyl-homoserine-lactone (3OHC10-HSL). Hence, in this work, we have studied the QS system in A. wodanis 06/09/139 by knocking out QS genes ainS and litR. The effects of the deletions were studied with regard to growth, AHL production and motility at different temperatures. Results By using HPLC-MS/MS, we found that the deletion of ainS in A. wodanis 06/09/139 resulted in the loss of 3OHC10-HSL production. The 3OHC10-HSL production in A. wodanis 06/09/139 increased with increase in cell density and more 3OHC10-HSL was produced at 6°C than at 12, 16 and 20°C. The litR mutant demonstrated a ~20% reduction in the production of 3OHC10-HSL relative to the wild type at the stationary phase. Compared to the wildtype and the ainS mutant strains, the litR mutant resulted in a strain with improved temperature tolerance. The motility in mutants (∆litR and ∆ainS) were significantly higher than that of the wildtype. Conclusions Our study shows that AinS in A. wodanis 06/09/139 is the AHL synthase responsible for 3OHC10-HSL production, where the production is both cell density and temperature dependent. Our data also shows that LitR regulates 3OHC10-HSL production only to a minor extent and both LitR and AinS are negative regulators of motility.


2005 ◽  
Vol 392 (2) ◽  
pp. 383-388 ◽  
Author(s):  
Jian Wang ◽  
Guohua Chen ◽  
Kostas Pantopoulos

TfR1 (transferrin receptor 1) mediates the uptake of transferrin-bound iron and thereby plays a critical role in cellular iron metabolism. Its expression is coupled to cell proliferation/differentiation and controlled in response to iron levels and other signals by transcriptional and post-transcriptional mechanisms. It is well established that TfR1 levels decline when cultured cells reach a high density and in the present study we have investigated the underlying mechanisms. Consistent with previous findings, we demonstrate that TfR1 expression is attenuated in a cell-density-dependent manner in human lung cancer H1299 cells and in murine B6 fibroblasts as the result of a marked decrease in mRNA content. This response is not associated with alterations in the RNA-binding activity of iron regulatory proteins that are indicative of a transcriptional mechanism. Reporter assays reveal that the human TfR1 promoters contains sequences mediating cell-density-dependent transcriptional inhibition. Mapping of the human and mouse TfR1 promoters identified a conserved hexa-nucleotide 5′-GAGGGC-3′ motif with notable sequence similarity to a previously described element within the IGF-2 (insulin-like growth factor-2) promoter. We show that this motif is necessary for the formation of specific complexes with nuclear extracts and for cell-density-dependent regulation in reporter gene assays. Thus the TfR1 promoter contains a functional ‘cell density response element’ (CDRE).


2004 ◽  
Vol 24 (1) ◽  
pp. 54-62 ◽  
Author(s):  
Paul Frankel ◽  
Ami Aronheim ◽  
Emma Kavanagh ◽  
Maria S Balda ◽  
Karl Matter ◽  
...  

Microbiology ◽  
2009 ◽  
Vol 155 (10) ◽  
pp. 3392-3402 ◽  
Author(s):  
Zhijun Zhong ◽  
Yufei Wang ◽  
Feng Qiao ◽  
Zhoujia Wang ◽  
Xinying Du ◽  
...  

Some Brucella rough mutants cause cytotoxicity that resembles oncosis and necrosis in macrophages. This cytotoxicity requires the type IV secretion system (T4SS). In rough mutants, the cell-surface O antigen is shortened and the T4SS structure is thus exposed on the surface. Cytotoxicity effector proteins can therefore be more easily secreted. This enhanced secretion of effector proteins might cause the increased levels of cytotoxicity observed. However, whether this cytotoxicity is unique to the rough mutant and is mediated by overexpression of the T4SS has not been definitively determined. To test this, in the present study, a virB inactivation mutant (BMΔvirB) and an overexpression strain (BM-VIR) of a smooth Brucella melitensis strain (BM) were constructed and their cytotoxicity for macrophages and intracellular survival capability were analysed and compared. Cytotoxicity was detected in macrophages infected with higher concentrations of strains BM or BM-VIR, but not in those infected with BMΔvirB. The quorum sensing signal molecule N-dodecanoyl-dl-homoserine lactone (C12-HSL), a molecule that can inhibit expression of virB, inhibited the cytotoxicity of BM and BM-VIR, but not of BMΔvirB. These results indicated that overexpression of virB is responsible for Brucella cytotoxicity in macrophages. Transcription analysis showed that virB is regulated in a cell-density-dependent manner both in in vitro culture and during macrophage infection. When compared with BM, BM-VIR showed a reduced survival capacity in macrophages and mice, but both strains demonstrated similar resistance to in vitro stress conditions designed to simulate intracellular environments. Taken together, the cytotoxicity of Brucella for macrophages is probably mediated by increased secretion of effector proteins that results from overexpression of virB or an increase in the number of bacterial cells. The observation that both inactivation and overexpression of virB are detrimental for Brucella intracellular survival also indicated that the expression of virB is tightly regulated in a cell-density-dependent manner.


2016 ◽  
Author(s):  
Celina Vila-Sanjurjo ◽  
Christoph Engwer ◽  
Xiaofei Qin ◽  
Lea Hembach ◽  
Tania Verdía-Cotelo ◽  
...  

Quorum sensing (QS) explains a type of bacterial cell-cell communication mediated by exocellular compounds that act as autoinducers (AIs). As such, QS can be considered the most primordial form of language. QS has profound implications for the control of many important traits (e.g.biofilm formation, secretion of virulence factors, etc.). Conceptually, the QS response can be split into its “listening” and “speaking” components,i.e.the power to sense AI levelsvs.the ability to synthesize and release these molecules. By explaining the cell-density dependence of QS behavior as the consequence of the system’s arrival to a threshold AI concentration, models of QS have traditionally assumed a salient role for the “QS speaking” module during bacterial cell-to-cell communication. In this paper, we have provided evidence that challenges this AI-centered view of QS and establishes LuxR-like activators at the center of QS. Our observation that highly coordinated, cell-density dependent responses can occur in the absence of AI production, implies that the ability to launch such responses is engrained within the “QS listening” module. Our data indicates that once a critical threshold of intracellular activator monomers in complex with AI is reached, a highly orchestrated QS response ensues. While displaying a clear cell-density dependence, such response does not strictly require the sensing of population levels by individual cells. We additionally show, bothin vivoandin silico, that despite their synchronous nature, QS responses do not require that all the cells in the population participate in the response. Central to our analysis was the discovery that percolation theory (PT) can be used to mathematically describe QS responses. While groundbreaking, our results are in agreement with and integrate the latest conclusions reached in the field. We explain for the first time, the cell-density-dependent synchronicity of QS responses as the function of a single protein, the LuxR-like activator, capable of coordinating the temporal response of a population of cells in the absence of cell-to-cell communication. Being QS the most primordial form of speech, our results have important implications for the evolution of language in its ancient chemical form.Abbreviations3Dthree dimensionalacwthreshold intracellular concentration of activator moleculesAHLacyl-homoserine lactoneAHLfischN-(3-oxohexanoyl)-L-homoserine lactoneAHLviolN-hexanoyl-DL-homoserine-lactoneAIautoinducera.uarbitrary unitsBMBbromophenol blueCAtrans-cinnamaldehydeFlfluorescence intensityFI/OD600density-normalized fluorescence intensityGFPgreen fluorescent proteinMwmolecular weightPTpercolation theoryQSquorum sensingtcpercolation critical timewtwild type


2021 ◽  
Vol 12 ◽  
Author(s):  
Congyang Yan ◽  
Xue Li ◽  
Gongliang Zhang ◽  
Yaolei Zhu ◽  
Jingran Bi ◽  
...  

Quorum sensing (QS) is a widespread regulatory mechanism in bacteria used to coordinate target gene expression with cell density. Thus far, little is known about the regulatory relationship between QS and cell density in terms of metabolic pathways in Hafnia alvei H4. In this study, transcriptomics analysis was performed under two conditions to address this question. The comparative transcriptome of H. alvei H4 wild-type at high cell density (OD600 = 1.7) relative to low cell density (OD600 = 0.3) was considered as growth phase-dependent manner (GPDM), and the transcriptome profile of luxI/R deletion mutant (ΔluxIR) compared to the wild-type was considered as QS-mediated regulation. In all, we identified 206 differentially expressed genes (DEGs) mainly presented in chemotaxis, TCA cycle, two-component system, ABC transporters and pyruvate metabolism, co-regulated by the both density-dependent regulation, and the results were validated by qPCR and swimming phenotypic assays. Aside from the co-regulated DEGs, we also found that 59 DEGs, mediated by density-independent QS, function in pentose phosphate and histidine metabolism and that 2084 cell-density-dependent DEGs involved in glycolysis/gluconeogenesis and phenylalanine metabolism were influenced only by GPDM from significantly enriched analysis of transcriptome data. The findings provided new information about the interplay between two density-dependent metabolic regulation, which could assist with the formulation of control strategies for this opportunistic pathogen, especially at high cell density.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yorick Janssens ◽  
Nathan Debunne ◽  
Anton De Spiegeleer ◽  
Evelien Wynendaele ◽  
Marta Planas ◽  
...  

AbstractQuorum sensing peptides (QSPs) are bacterial peptides produced by Gram-positive bacteria to communicate with their peers in a cell-density dependent manner. These peptides do not only act as interbacterial communication signals, but can also have effects on the host. Compelling evidence demonstrates the presence of a gut-brain axis and more specifically, the role of the gut microbiota in microglial functioning. The aim of this study is to investigate microglial activating properties of a selected QSP (PapRIV) which is produced by Bacillus cereus species. PapRIV showed in vitro activating properties of BV-2 microglia cells and was able to cross the in vitro Caco-2 cell model and reach the brain. In vivo peptide presence was also demonstrated in mouse plasma. The peptide caused induction of IL-6, TNFα and ROS expression and increased the fraction of ameboid BV-2 microglia cells in an NF-κB dependent manner. Different metabolites were identified in serum, of which the main metabolite still remained active. PapRIV is thus able to cross the gastro-intestinal tract and the blood–brain barrier and shows in vitro activating properties in BV-2 microglia cells, hereby indicating a potential role of this quorum sensing peptide in gut-brain interaction.


2016 ◽  
Vol 229 (2) ◽  
pp. 187-196 ◽  
Author(s):  
Erika Galgoczi ◽  
Florence Jeney ◽  
Annamaria Gazdag ◽  
Annamaria Erdei ◽  
Monika Katko ◽  
...  

During the course of Graves’ orbitopathy (GO), orbital fibroblasts are exposed to factors that lead to proliferation and extracellular matrix (ECM) overproduction. Increased levels of tissue plasminogen activator inhibitor type 1 (PAI-1 (SERPINE1)) might promote the accumulation of ECM components. PAI-1 expression is regulated by cell density and various cytokines and growth factors including transforming growth factorβ(TGF-β). We examined the effects of increasing cell densities and TGF-β on orbital fibroblasts obtained from GO patients and controls. Responses were evaluated by the measurement of proliferation, PAI-1 expression, and ECM production. There was an inverse correlation between cell density and the per cell production of PAI-1. GO orbital, normal orbital, and dermal fibroblasts behaved similarly in this respect. Proliferation rate also declined with increasing cell densities. Hyaluronan (HA) production was constant throughout the cell densities tested in all cell lines. In both GO and normal orbital fibroblasts, but not in dermal fibroblasts, TGF-β stimulated PAI-1 production in a cell density-dependent manner, reaching up to a five-fold increase above baseline. This has been accompanied by increased HA secretion and pericellular HA levels at high cell densities. Increasing cell density is a negative regulator of proliferation and PAI-1 secretion both in normal and GO orbital fibroblasts; these negative regulatory effects are partially reversed in the presence of TGF-β. Cell density-dependent regulation of PAI-1 expression in the orbit, together with the local cytokine environment, may have a regulatory role in the turnover of the orbital ECM and may contribute to the expansion of orbital soft tissue in GO.


Sign in / Sign up

Export Citation Format

Share Document