Energy efficiency by determining the production process with the lowest energy consumption in a steel forging facility

2019 ◽  
Vol 215 ◽  
pp. 1362-1370 ◽  
Author(s):  
Umit Unver ◽  
Ozlem Kara
2020 ◽  
Vol 14 ◽  
Author(s):  
M. Sivaram ◽  
V. Porkodi ◽  
Amin Salih Mohammed ◽  
S. Anbu Karuppusamy

Background: With the advent of IoT, the deployment of batteries with a limited lifetime in remote areas is a major concern. In certain conditions, the network lifetime gets restricted due to limited battery constraints. Subsequently, the collaborative approaches for key facilities help to reduce the constraint demands of the current security protocols. Aim: This work covers and combines a wide range of concepts linked by IoT based on security and energy efficiency. Specifically, this study examines the WSN energy efficiency problem in IoT and security for the management of threats in IoT through collaborative approaches and finally outlines the future. The concept of energy-efficient key protocols which clearly cover heterogeneous IoT communications among peers with different resources has been developed. Because of the low capacity of sensor nodes, energy efficiency in WSNs has been an important concern. Methods: Hence, in this paper, we present an algorithm for Artificial Bee Colony (ABC) which reviews security and energy consumption to discuss their constraints in the IoT scenarios. Results: The results of a detailed experimental assessment are analyzed in terms of communication cost, energy consumption and security, which prove the relevance of a proposed ABC approach and a key establishment. Conclusion: The validation of DTLS-ABC consists of designing an inter-node cooperation trust model for the creation of a trusted community of elements that are mutually supportive. Initial attempts to design the key methods for management are appropriate individual IoT devices. This gives the system designers, an option that considers the question of scalability.


2015 ◽  
Vol 8 (1) ◽  
pp. 206-210 ◽  
Author(s):  
Yu Junyang ◽  
Hu Zhigang ◽  
Han Yuanyuan

Current consumption of cloud computing has attracted more and more attention of scholars. The research on Hadoop as a cloud platform and its energy consumption has also received considerable attention from scholars. This paper presents a method to measure the energy consumption of jobs that run on Hadoop, and this method is used to measure the effectiveness of the implementation of periodic tasks on the platform of Hadoop. Combining with the current mainstream of energy estimate formula to conduct further analysis, this paper has reached a conclusion as how to reduce energy consumption of Hadoop by adjusting the split size or using appropriate size of workers (servers). Finally, experiments show the effectiveness of these methods as being energy-saving strategies and verify the feasibility of the methods for the measurement of periodic tasks at the same time.


2021 ◽  
Vol 236 ◽  
pp. 110772
Author(s):  
Carmela Vetromile ◽  
Antonio Spagnuolo ◽  
Antonio Petraglia ◽  
Antonio Masiello ◽  
Maria Rosa di Cicco ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4089
Author(s):  
Kaiqiang Zhang ◽  
Dongyang Ou ◽  
Congfeng Jiang ◽  
Yeliang Qiu ◽  
Longchuan Yan

In terms of power and energy consumption, DRAMs play a key role in a modern server system as well as processors. Although power-aware scheduling is based on the proportion of energy between DRAM and other components, when running memory-intensive applications, the energy consumption of the whole server system will be significantly affected by the non-energy proportion of DRAM. Furthermore, modern servers usually use NUMA architecture to replace the original SMP architecture to increase its memory bandwidth. It is of great significance to study the energy efficiency of these two different memory architectures. Therefore, in order to explore the power consumption characteristics of servers under memory-intensive workload, this paper evaluates the power consumption and performance of memory-intensive applications in different generations of real rack servers. Through analysis, we find that: (1) Workload intensity and concurrent execution threads affects server power consumption, but a fully utilized memory system may not necessarily bring good energy efficiency indicators. (2) Even if the memory system is not fully utilized, the memory capacity of each processor core has a significant impact on application performance and server power consumption. (3) When running memory-intensive applications, memory utilization is not always a good indicator of server power consumption. (4) The reasonable use of the NUMA architecture will improve the memory energy efficiency significantly. The experimental results show that reasonable use of NUMA architecture can improve memory efficiency by 16% compared with SMP architecture, while unreasonable use of NUMA architecture reduces memory efficiency by 13%. The findings we present in this paper provide useful insights and guidance for system designers and data center operators to help them in energy-efficiency-aware job scheduling and energy conservation.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4209
Author(s):  
Rita Remeikienė ◽  
Ligita Gasparėnienė ◽  
Aleksandra Fedajev ◽  
Marek Szarucki ◽  
Marija Đekić ◽  
...  

The main goal of setting energy efficiency priorities is to find ways to reduce energy consumption without harming consumers and the environment. The renovation of buildings can be considered one of the main aspects of energy efficiency in the European Union (EU). In the EU, only 5% of the renovation projects have been able to yield energy-saving at the deep renovation level. No other study has thus far ranked the EU member states according to achieved results in terms of increased usage in renewable sources, a decrease in energy usage and import, and reduction in harmful gas emissions due to energy usage. The main purpose of this article is to perform a comparative analysis of EU economies according to selected indicators related to the usage of renewable resources, energy efficiency, and emissions of harmful gasses as a result of energy usage. The methodological contribution of our study is related to developing a complex and robust research method for investment efficiency assessment allowing the study of three groups of indicators related to the usage of renewable energy sources, energy efficiency, and ecological aspects of energy. It was based on the PROMETHEE II method and allows testing it in other time periods, as well as modifying it for research purposes. The EU member states were categorized by such criteria as energy from renewables and biofuels, final energy consumption from renewables and biofuels, gross electricity generation from renewables and biofuels and import dependency, and usage of renewables and biofuels for heating and cooling. The results of energy per unit of Gross Domestic Product (GDP), Greenhouse gasses (GHG) emissions per million inhabitants (ECO2), energy per capita, the share of CO2 emissions from public electricity, and heat production from total CO2 emissions revealed that Latvia, Sweden, Portugal, Croatia, Austria, Lithuania, Romania, Denmark, and Finland are the nine most advanced countries in the area under consideration. In the group of the most advanced countries, energy consumption from renewables and biofuels is higher than the EU average.


2021 ◽  
Vol 11 (5) ◽  
pp. 2342
Author(s):  
Long Li ◽  
Zhongqu Xie ◽  
Xiang Luo ◽  
Juanjuan Li

Gait pattern generation has an important influence on the walking quality of biped robots. In most gait pattern generation methods, it is usually assumed that the torso keeps vertical during walking. It is very intuitive and simple. However, it may not be the most efficient. In this paper, we propose a gait pattern with torso pitch motion (TPM) during walking. We also present a gait pattern with torso keeping vertical (TKV) to study the effects of TPM on energy efficiency of biped robots. We define the cyclic gait of a five-link biped robot with several gait parameters. The gait parameters are determined by optimization. The optimization criterion is chosen to minimize the energy consumption per unit distance of the biped robot. Under this criterion, the optimal gait performances of TPM and TKV are compared over different step lengths and different gait periods. It is observed that (1) TPM saves more than 12% energy on average compared with TKV, and the main factor of energy-saving in TPM is the reduction of energy consumption of the swing knee in the double support phase and (2) the overall trend of torso motion is leaning forward in double support phase and leaning backward in single support phase, and the amplitude of the torso pitch motion increases as gait period or step length increases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Arif Budiyanto ◽  
Muhammad Hanzalah Huzaifi ◽  
Simon Juanda Sirait ◽  
Putu Hangga Nan Prayoga

AbstractSustainable development of container terminals is based on energy efficiency and reduction in CO2 emissions. This study estimated the energy consumption and CO2 emissions in container terminals according to their layouts. Energy consumption was calculated based on utility data as well as fuel and electricity consumptions for each container-handling equipment in the container terminal. CO2 emissions were estimated using movement modality based on the number of movements of and distance travelled by each container-handling equipment. A case study involving two types of container terminal layouts i.e. parallel and perpendicular layouts, was conducted. The contributions of each container-handling equipment to the energy consumption and CO2 emissions were estimated and evaluated using statistical analysis. The results of the case study indicated that on the CO2 emissions in parallel and perpendicular layouts were relatively similar (within the range of 16–19 kg/TEUs). These results indicate that both parallel and perpendicular layouts are suitable for future ports based on sustainable development. The results can also be used for future planning of operating patterns and layout selection in container terminals.


2021 ◽  
pp. 108201322199161
Author(s):  
Merve Tuçe Tunç ◽  
Arda Akdoğan ◽  
Cemalettin Baltacı ◽  
Zeliha Kaya ◽  
Halil İbrahim Odabaş

Pekmez is a concentrated syrup-like food conventionally produced by vacuum evaporation process from sugar-rich fruits. In this study, the applicability of grape pekmez production by ohmic heating assisted vacuum evaporation (ΩVE) method was investigated. Conventional vacuum evaporation (CVE) and ΩVE methods were compared in terms of physicochemical properties, HMF (5-hydroxymethylfurfural) contents, rheological properties, and energy consumptions. ΩVE was run at four different voltage gradients (17.5, 20, 22.5, and 25 V/cm). Total process times for grape pekmez production were determined as 57, 28.5, 32, 39, and 50 minutes for CVE, ΩVE (25 V/cm), ΩVE (22.5 V/cm), ΩVE (20 V/cm) and ΩVE (17.5 V/cm), respectively. Energy consumption of CVE method was higher than ΩVE method for all voltage gradients. Energy efficiency increased as the voltage gradient increased. There was no significant difference between CVE and ΩVE methods for HMF contents. The results show that the ΩVE method could be an alternative to the CVE process for grape pekmez production.


Author(s):  
Xingzheng Chen ◽  
Congbo Li ◽  
Ying Tang ◽  
Li Li ◽  
Hongcheng Li

AbstractMechanical manufacturing industry consumes substantial energy with low energy efficiency. Increasing pressures from energy price and environmental directive force mechanical manufacturing industries to implement energy efficient technologies for reducing energy consumption and improving energy efficiency of their machining processes. In a practical machining process, cutting parameters are vital variables set by manufacturers in accordance with machining requirements of workpiece and machining condition. Proper selection of cutting parameters with energy consideration can effectively reduce energy consumption and improve energy efficiency of the machining process. Over the past 10 years, many researchers have been engaged in energy efficient cutting parameter optimization, and a large amount of literature have been published. This paper conducts a comprehensive literature review of current studies on energy efficient cutting parameter optimization to fully understand the recent advances in this research area. The energy consumption characteristics of machining process are analyzed by decomposing total energy consumption into electrical energy consumption of machine tool and embodied energy of cutting tool and cutting fluid. Current studies on energy efficient cutting parameter optimization by using experimental design method and energy models are reviewed in a comprehensive manner. Combined with the current status, future research directions of energy efficient cutting parameter optimization are presented.


2021 ◽  
pp. 1420326X2110130
Author(s):  
Manta Marcelinus Dakyen ◽  
Mustafa Dagbasi ◽  
Murat Özdenefe

Ambitious energy efficiency goals constitute an important roadmap towards attaining a low-carbon society. Thus, various building-related stakeholders have introduced regulations targeting the energy efficiency of buildings. However, some countries still lack such policies. This paper is an effort to help bridge this gap for Northern Cyprus, a country devoid of building energy regulations that still experiences electrical energy production and distribution challenges, principally by establishing reference residential buildings which can be the cornerstone for prospective building regulations. Statistical analysis of available building stock data was performed to determine existing residential reference buildings. Five residential reference buildings with distinct configurations that constituted over 75% floor area share of the sampled data emerged, with floor areas varying from 191 to 1006 m2. EnergyPlus models were developed and calibrated for five residential reference buildings against yearly measured electricity consumption. Values of Mean Bias Error (MBE) and Cumulative Variation of Root Mean Squared Error CV(RMSE) between the models’ energy consumption and real energy consumption on monthly based analysis varied within the following ranges: (MBE)monthly from –0.12% to 2.01% and CV(RMSE)monthly from 1.35% to 2.96%. Thermal energy required to maintain the models' setpoint temperatures for cooling and heating varied from 6,134 to 11,451 kWh/year.


Sign in / Sign up

Export Citation Format

Share Document