scholarly journals Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo

2012 ◽  
Vol 159 (3) ◽  
pp. 393-402 ◽  
Author(s):  
Swati Biswas ◽  
Namita S. Dodwadkar ◽  
Pranali P. Deshpande ◽  
Vladimir P. Torchilin
Drug Research ◽  
2017 ◽  
Vol 68 (04) ◽  
pp. 205-212 ◽  
Author(s):  
Wanqing Li ◽  
Zhiguo Li ◽  
Lisha Wei ◽  
Aiping Zheng

AbstractWe created a novel paclitaxel (PTX) nanoparticle drug delivery system and compared this to acommercial injection preparation to evaluate the antitumor effects for both formulations in vivo and in vitro.PTXnanocrystals were 194.9 nm with potential of −29.6 mV. Cytotoxicity tests indicated that both formulations had similar effects and cytotoxicity was dose- and time-dependent.Pharmacodynamics indicated that the drug concentration at the tumor was greater with PTX nanocrystals compared to commercial injection (P<0.01) and that drug accumulated more and for a longer duration. In vivo antitumor evaluation indicated significant antitumor effects and low toxicity of PTX nanocrystals. Moreover, bioimaging indicated that the PTX retention time in MCF-7-bearing mice was longer, especially at the tumor site, and this high drug concentration was maintained for a long time.Overall, PTX nanocrystalsare feasible and superior to traditional injection formulation chemotherapy.


Author(s):  
Qiongjie Ding ◽  
Yiwei Liu ◽  
Chuncheng Shi ◽  
Jifei Xiao ◽  
Wei Dai ◽  
...  

Background: Metal-organic frameworks (MOFs) exhibited the adjustable aperture, high load capacities, tailorable structures, and excellent biocompatibilities that have used to be as drug delivery carries in cancer therapy. Until now, Zr-MOFs in particular combine optimal stability towards hydrolysis and postsynthetic modification with low toxicity, and are widely studied for its excellent biological performance. Introduction: This review comprises the exploration of Zr-MOFs as drug delivery devices (DDSs) with focus on various new methods, including chemotherapy (CT), photodynamic therapy (PDT), photothermal therapy (PTT), sonodynamic therapy(SDT), radiotherapy, immunotherapy, gene therapy and related combined therapies, which all generate reactive oxygen species (ROS) to achieve the high efficiency of tumor therapy. Conclusion: We described and summarized these pertinent examples of the therapeutic mechanisms and highlight the antitumor effects of their biological application both in vitro and in vivo. The perspectives on their future applications and analogous challenge of the Zr-MOFs materials are given.


Nanomedicine ◽  
2020 ◽  
Vol 15 (7) ◽  
pp. 661-676 ◽  
Author(s):  
Zengying Liu ◽  
Jianbo Shi ◽  
Bangshang Zhu ◽  
Qin Xu

Aim: To design and fabricate a multifunctional drug-delivery nanoplatform for oral cancer therapy. Materials & methods: Polyethylene glycol-stabilized, PDPN antibody (PDPN Ab)- and doxorubicin (DOX)-conjugated gold nanoparticles (AuNPs) were prepared and evaluated for their cytotoxicity and antitumor efficacy in both chemotherapy and photothermal therapy. Results: The obtained (PDPN Ab)-AuNP-DOX system presents low toxicity, a high drug loading capacity and cellular uptake efficiency. Both in vitro and in vivo experiments demonstrate that (PDPN Ab)-AuNP-DOX has enhanced antitumor efficacy. Treatment with (PDPN Ab)-AuNP-DOX combined with laser irradiation exhibits superior antitumor effects. Conclusion: This (PDPN Ab)-AuNP-DOX system may be used as a versatile drug-delivery nanoplatform for targeted and combined chemo-photothermal therapy against oral cancer.


2019 ◽  
Vol 24 (40) ◽  
pp. 4779-4793 ◽  
Author(s):  
Paulo M.P. Ferreira ◽  
Lays A.R.L. Rodrigues ◽  
Lunna Paula de Alencar Carnib ◽  
Paulo Víctor de Lima Sousa ◽  
Luis Michel Nolasco Lugo ◽  
...  

Background: Sulforaphane (SF, 1-isothiocyanato-4-(methyl-sulfinyl)-butane) is found in broccoli, cabbage and cauliflower. Methods: we performed a critical review on the antioxidative, chemopreventive and antitumor effects of SF from cruciferous vegetables against prostate cancers and molecular pathways. For a complete and reliable review, primary and secondary resources were used, including original and review articles, books and government documents published until March 2018. Articles that are in duplicity and disconnected are not considered for review. SF is derived from glucoraphanin (4-methyl-sulfinyl-butyl-glucosinate), being one of the most commonly found isothiocyanates in vegetables from Brassica spp., especially in broccoli samples. In vitro studies indicate that SF induces apoptosis in a dependent or non-dependent method of androgens by transcription of tumor suppressor genes, oxidation response and higher expression of phase II enzymes in prostate cancer cells. Sulforaphane also decreases transcription of the nuclear factor kB and antiapoptotic proteins, expression of cyclin D2 and survivin and DNA synthesis, increases Nrf2 gene activity, interferes with genome compacting by inhibition of histone deacetylases and disrupts Hsp90 complexes, which cause cell cycle arrest, mitosis interruption, activation of caspases and mitochondria depolarization. Conclusion: SF and cruciferous vegetables play antioxidative and chemopreventive role, delaying or blocking in vivo carcinogenesis, causing biochemical and epigenetic changes, preventing, delaying, or reversing preneoplastic or advanced prostate lesions, and frequently activating tumor cell death by intrinsic methods of apoptosis. These outcomes encourage the consumption of Brassica specimens, which could be easily achieved by the incorporation of food and vegetables rich in cruciferous isothiocyanates in the diet.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroaki Kanzaki ◽  
Tetsuhiro Chiba ◽  
Junjie Ao ◽  
Keisuke Koroki ◽  
Kengo Kanayama ◽  
...  

AbstractFGF19/FGFR4 autocrine signaling is one of the main targets for multi-kinase inhibitors (MKIs). However, the molecular mechanisms underlying FGF19/FGFR4 signaling in the antitumor effects to MKIs in hepatocellular carcinoma (HCC) remain unclear. In this study, the impact of FGFR4/ERK signaling inhibition on HCC following MKI treatment was analyzed in vitro and in vivo assays. Serum FGF19 in HCC patients treated using MKIs, such as sorafenib (n = 173) and lenvatinib (n = 40), was measured by enzyme-linked immunosorbent assay. Lenvatinib strongly inhibited the phosphorylation of FRS2 and ERK, the downstream signaling molecules of FGFR4, compared with sorafenib and regorafenib. Additional use of a selective FGFR4 inhibitor with sorafenib further suppressed FGFR4/ERK signaling and synergistically inhibited HCC cell growth in culture and xenograft subcutaneous tumors. Although serum FGF19high (n = 68) patients treated using sorafenib exhibited a significantly shorter progression-free survival and overall survival than FGF19low (n = 105) patients, there were no significant differences between FGF19high (n = 21) and FGF19low (n = 19) patients treated using lenvatinib. In conclusion, robust inhibition of FGF19/FGFR4 is of importance for the exertion of antitumor effects of MKIs. Serum FGF19 levels may function as a predictive marker for drug response and survival in HCC patients treated using sorafenib.


Nanophotonics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 3023-3034
Author(s):  
Weiyuan Liang ◽  
Dou Wang ◽  
Xiaohui Ren ◽  
Chenchen Ge ◽  
Hanyue Wang ◽  
...  

AbstractTwo-dimensional black phosphorus (BP) has been demonstrated to be promising in photoelectronic devices, electrode materials, and biomedicine owing to its outstanding properties. However, the application of BP has been hindered by harsh preparation conditions, high costs, and easy degradation in ambient condition. Herein, we report a facile and cost-effective strategy for synthesis of orthorhombic phase BP and a kind of BP-reduced graphene oxide (BP/rGO) hybrids in which BP remains stable for more than 4 weeks ascribed to the formation of phosphorus-carbon covalent bonds between BP and rGO as well as the protection effect of the unique wrinkle morphology of rGO nanosheets. Surface modification BP/rGO hybrids (PEGylated BP/rGO) exhibit excellent photothermal performance with photothermal conversion efficiency as high as 57.79% at 808 nm. The BP/rGO hybrids exhibit enhanced antitumor effects both in vitro and in vivo, showing promising perspectives in biomedicine.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Lu Wang ◽  
Shuwei Liu ◽  
Chunxia Ren ◽  
Siyuan Xiang ◽  
Daowei Li ◽  
...  

AbstractNanomaterial-based drug sustainable release systems have been tentatively applied to bone regeneration. They, however, still face disadvantages of high toxicity, low biocompatibility, and low drug-load capacity. In view of the low toxicity and high biocompatibility of polymer nanomaterials and the excellent load capacity of hollow nanomaterials with high specific surface area, we evaluated the hollow polydopamine nanoparticles (HPDA NPs), in order to find an optimal system to effectively deliver the osteogenic drugs to improve treatment of bone defect. Data demonstrated that the HPDA NPs synthesized herein could efficiently load four types of osteogenic drugs and the drugs can effectively release from the HPDA NPs for a relatively longer time in vitro and in vivo with low toxicity and high biocompatibility. Results of qRT-PCR, ALP, and alizarin red S staining showed that drugs released from the HPDA NPs could promote osteogenic differentiation and proliferation of rat bone marrow mesenchymal stem cells (rBMSCs) in vitro. Image data from micro-CT and H&E staining showed that all four osteogenic drugs released from the HPDA NPs effectively promoted bone regeneration in the defect of tooth extraction fossa in vivo, especially tacrolimus. These results suggest that the HPDA NPs, the biodegradable hollow polymer nanoparticles with high drug load rate and sustainable release ability, have good prospect to treat the bone defect in future clinical practice.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chunyang Li ◽  
Shuangqing Yang ◽  
Huaqing Ma ◽  
Mengjia Ruan ◽  
Luyan Fang ◽  
...  

Abstract Background Cervical cancer is a type of the most common gynecology tumor in women of the whole world. Accumulating data have shown that icariin (ICA), a natural compound, has anti-cancer activity in different cancers, including cervical cancer. The study aimed to reveal the antitumor effects and the possible underlying mechanism of ICA in U14 tumor-bearing mice and SiHa cells. Methods The antitumor effects of ICA were investigated in vivo and in vitro. The expression of TLR4/MyD88/NF-κB and Wnt/β-catenin signaling pathways were evaluated. Results We found that ICA significantly suppressed tumor tissue growth and SiHa cells viability in a dose-dependent manner. Also, ICA enhanced the anti-tumor humoral immunity in vivo. Moreover, ICA significantly improved the composition of the microbiota in mice models. Additionally, the results clarified that ICA significantly inhibited the migration, invasion capacity, and expression levels of TGF-β1, TNF-α, IL-6, IL-17A, IL-10 in SiHa cells. Meanwhile, ICA was revealed to promote the apoptosis of cervical cancer cells by down-regulating Ki67, survivin, Bcl-2, c-Myc, and up-regulating P16, P53, Bax levels in vivo and in vitro. For the part of mechanism exploration, we showed that ICA inhibits the inflammation, proliferation, migration, and invasion, as well as promotes apoptosis and immunity in cervical cancer through impairment of TLR4/MyD88/NF-κB and Wnt/β-catenin pathways. Conclusions Taken together, ICA could be a potential supplementary agent for cervical cancer treatment.


2021 ◽  
pp. 096032712199945
Author(s):  
AT Aliyev ◽  
S Ozcan-Sezer ◽  
A Akdemir ◽  
H Gurer-Orhan

Apigenin, a flavonoid, is reported to act as an estrogen receptor (ER) agonist and inhibit aromatase enzyme. However, amentoflavone, a biflavonoid bearing two apigenin molecules, has not been evaluated for its endocrine modulatory effects. Besides, it is highly consumed by young people to build muscles, enhance mood and lose weight. In the present study, apigenin was used as a reference molecule and ER mediated as well as ER-independent estrogenic/antiestrogenic activity of amentoflavone was investigated. Antitumor activity of amentoflavone was also investigated in both ER positive (MCF-7 BUS) and triple-negative (MDA-MB-231) breast cancer cells and its cytotoxicity was evaluated in human breast epithelial cells (MCF-10A). Our data confirmed ER agonist, aromatase inhibitory and cytotoxic effects of apigenin in breast cancer cells, where no ER mediated estrogenic effect and physiologically irrelevant, slight, aromatase inhibition was found for amentoflavone. Although selective cytotoxicity of amentoflavone was found in MCF-7 BUS cells, it does not seem to be an alternative to the present cytotoxic drugs. Therefore, neither an adverse effect, mediated by an estrogenic/antiestrogenic effect of amentoflavone nor a therapeutical benefit would be expected from amentoflavone. Further studies could be performed to investigate its in vivo effects.


Sign in / Sign up

Export Citation Format

Share Document