Enzymatic modification and particle size reduction of wheat bran improves the mechanical properties and structure of bran-enriched expanded extrudates

2014 ◽  
Vol 60 (2) ◽  
pp. 448-456 ◽  
Author(s):  
Outi Santala ◽  
Anish Kiran ◽  
Nesli Sozer ◽  
Kaisa Poutanen ◽  
Emilia Nordlund
2013 ◽  
Vol 7 (7) ◽  
pp. 2121-2133 ◽  
Author(s):  
Syed Ariful Alam ◽  
Jenni Järvinen ◽  
Satu Kirjoranta ◽  
Kirsi Jouppila ◽  
Kaisa Poutanen ◽  
...  

2020 ◽  
Vol 2 (2) ◽  
pp. 23

A novel Force spinning technique was used to fabricate microfibers from polycaprolactone (PCL) infused with bio-based hydroxyapatite (HA). The aim of this study is to analyze the thermo-mechanical properties of the developed fibers in addition to cell adhesion and proliferation analysis. The HA is synthesized from sundried raw fish scales of carpa family. The fish scales are calcinated at 800°C in a box furnace and are bead milled for one hour in a nano agitator bead mill for particle size reduction. Thus obtained nanoparticles are characterized using XRD, SEM, and TEM for particle size reduction, crystallinity, and structure. The PCL solution formed by dissolving 16 wt% of PCL in chloroform is magnetically stirred for 3 hrs at 170 rpm. The HA nanoparticles were infused in this solution by 1, 2, and 3 wt% and is stirred in a think mixer under vacuum for 7 mins for uniform dispersion of nanoparticles in the solution. The solution mixture is injected into the spinneret of force spinning apparatus. The PCL/HA fibers were collected at rotational aped 7000 rpm with a spin time of 10mins. The thermo-mechanical properties of the fibers were analyzed using tensile test, DSC, and DMA analyses. The biological assessment of the fibers is done using in vitro cell studies of the scaffolds that were cut from the fibers. These scaffolds can be further used for various biomedical applications such as sutures and controlled wound healing.


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1755
Author(s):  
Yamina De Bondt ◽  
Inge Liberloo ◽  
Chiara Roye ◽  
Erich J. Windhab ◽  
Lisa Lamothe ◽  
...  

Wheat bran consumption is associated with several health benefits, but its incorporation into food products remains low because of sensory and technofunctional issues. Besides, its full beneficial potential is probably not achieved because of its recalcitrant nature and inaccessible structure. Particle size reduction can affect both technofunctional and nutrition-related properties. Therefore, in this study, wet milling and cryogenic milling, two techniques that showed potential for extreme particle size reduction, were used. The effect of the milling techniques, performed on laboratory and large scale, was evaluated on the structure and physicochemical properties of wheat bran. With a median particle size (d50) of 6 µm, the smallest particle size was achieved with cryogenic milling on a laboratory scale. Cryogenic milling on a large scale and wet milling on laboratory and large scale resulted in a particle size reduction to a d50 of 28–38 µm. In the milled samples, the wheat bran structure was broken down, and almost all cells were opened. Wet milling on laboratory and large scale resulted in bran with a more porous structure, a larger surface area and a higher capacity for binding water compared to cryogenic milling on a large scale. The extensive particle size reduction by cryogenic milling on a laboratory scale resulted in wheat bran with the highest surface area and strong water retention capacity. Endogenous enzyme activity and mechanical breakdown during the different milling procedures resulted in different extents of breakdown of starch, sucrose, β-glucan, arabinoxylan and phytate. Therefore, the diverse impact of the milling techniques on the physicochemical properties of wheat bran could be used to target different technofunctional and health-related properties.


2018 ◽  
Vol 60 (1) ◽  
pp. 42-45
Author(s):  
Tuan Quang Nguyen ◽  
Van Lam Nguyen ◽  
Thai Son Nguyen ◽  
Thi Minh Hue Pham ◽  
◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 971
Author(s):  
Oktawian Bialas ◽  
Mateusz Lis ◽  
Anna Woźniak ◽  
Marcin Adamiak

This paper analyses the possibility of obtaining surface-infused nano gold particles with the polyether ether ketone (PEEK) using picosecond laser treatment. To fuse particles into polymer, the raw surface of PEEK was sputtered with 99.99% Au and micromachined by an A-355 laser device for gold particle size reduction. Biomimetic pattern and parameters optimization were key properties of the design for biomedical application. The structures were investigated by employing surface topography in the presence of micron and sub-micron features. The energy of the laser beam stating the presence of polymer bond thermalisation with remelting due to high temperature was also taken into the account. The process was suited to avoid intensive surface modification that could compromise the mechanical properties of fragile cardiovascular devices. The initial material analysis was conducted by power–depth dependence using confocal microscopy. The evaluation of gold particle size reduction was performed with scanning electron microscopy (SEM), secondary electron (SE) and quadrant backscatter electron detector (QBSD) and energy dispersive spectroscopy (EDS) analysis. The visibility of the constituted coating was checked by a commercial grade X-ray that is commonly used in hospitals. Attempts to reduce deposited gold coating to the size of Au nanoparticles (Au NPs) and to fuse them into the groove using a laser beam have been successfully completed. The relationship between the laser power and the characteristics of the particles remaining in the laser irradiation area has been established. A significant increase in quantity was achieved using laser power with a minimum power of 15 mW. The obtained results allowed for the continuation of the pilot study for augmented research and material properties analysis.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2856
Author(s):  
Gary B. Smejkal ◽  
Edmund Y. Ting ◽  
Karthik Nambi Arul Nambi ◽  
Richard T. Schumacher ◽  
Alexander V. Lazarev

Stable, oil-in-water nanoemulsions containing astaxanthin (AsX) were produced by intense fluid shear forces resulting from pumping a coarse reagent emulsion through a self-throttling annular gap valve at 300 MPa. Compared to crude emulsions prepared by conventional homogenization, a size reduction of over two orders of magnitude was observed for AsX-encapsulated oil droplets following just one pass through the annular valve. In krill oil formulations, the mean hydrodynamic diameter of lipid particles was reduced to 60 nm after only two passes through the valve and reached a minimal size of 24 nm after eight passes. Repeated processing of samples through the valve progressively decreased lipid particle size, with an inflection in the rate of particle size reduction generally observed after 2–4 passes. Krill- and argan oil-based nanoemulsions were produced using an Ultra Shear Technology™ (UST™) approach and characterized in terms of their small particle size, low polydispersity, and stability.


Sign in / Sign up

Export Citation Format

Share Document