Decoupling of forest water supply and agricultural water demand attributable to deforestation in North Korea

2019 ◽  
Vol 248 ◽  
pp. 109256 ◽  
Author(s):  
Chul-Hee Lim ◽  
Cholho Song ◽  
Yuyoung Choi ◽  
Seong Woo Jeon ◽  
Woo-Kyun Lee
2007 ◽  
Author(s):  
Sung Han - Yoon ◽  
Jin Yong Choi ◽  
Min Won Jang ◽  
Seung Hwan Yoo

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1657
Author(s):  
Chul-Hee Lim

Climate change has inherent multidisciplinary characteristics, and predicting the future of a single field of work has a limit. Therefore, this study proposes a water-centric nexus approach for the agriculture and forest sectors for improving the response to climate change in the Korean Peninsula. Two spatial models, i.e., Environmental Policy Integrated Climate and Integrated Valuation of Ecosystem Services and Tradeoffs, were used to assess the extent of changes in agricultural water demand, forest water supply, and their balance at the watershed level in the current and future climatic conditions. Climate changed has increased the agricultural water demand and forest water supply significantly in all future scenarios and periods. Comparing the results with RCP8.5 2070s and the baseline, the agricultural water demand and forest water supply increased by 35% and 28%, respectively. Water balance assessment at the main watershed level in the Korean Peninsula revealed that although most scenarios of the future water supply increases offset the demand growth, a risk to water balance exists in case of a low forest ratio or smaller watershed. For instance, the western plains, which are the granary regions of South and North Korea, indicate a higher risk than other areas. These results show that the land-use balance can be an essential factor in a water-centric adaptation to climate change. Ultimately, the water-centric nexus approach can make synergies by overcoming increasing water demands attributable to climate change.


2021 ◽  
Vol 3 ◽  
Author(s):  
Pennan Chinnasamy ◽  
Aman Srivastava

Traditional tanks in arid regions of India have been working to address water demands of the public for more than 2000 years. However, recent decade is witnessing growing domestic and agricultural water demand coupled with rising encroachment and ignorance toward tanks; consequently, intensifying water shortage issues. While climate change is impacting at alarming rates, local agencies have forgotten these tanks that have aided in sustainable water supply solutions for decades apart from municipal water supply. This research, for the first time, estimates water supply-demand for an arid region in South India (Madurai) and lists out the benefits if tanks were managed and desilted. Exploratory investigations for documenting seasonal domestic and agricultural unmet water demand were conducted followed by their validation through ground-truthing across the study period 2002–2019. Results indicated high unmet domestic water demand, estimating ~73% [maximum 365 thousand cubic meters (TCM)] for summer (March to May) and ~33% (maximum 149 TCM) for winter (January and February), and high unmet agricultural water demand estimating ~90% (maximum 5,424 TCM) during North-East monsoon (October to December), and ~95% (maximum 5,161 TCM) during South-West monsoon (June to September). Erratic rainfall pattern was identified as a major cause for higher fluctuations in water availability inside tanks ranging 0–50%, while lack of ownership resulted in increased siltation load ranging 30–70% of the tank's volume. The study found that the major portion of the unmet water demand can be accounted for through rehabilitation of the tanks, as under the rehabilitated tank irrigation scenario the tank storage could attain 200–400% more water than the estimated agricultural water demand. It was concluded that if the cascade tanks were managed appropriately, they could have positive impacts by reducing floods and providing water for drought seasons.


2018 ◽  
Vol 59 ◽  
pp. 00022
Author(s):  
Mikołaj Sikorski ◽  
Hanna Bauman-Kaszubska

When calculating the balance of water supply, the purpose for which water is intended should be taken into account. Depending on them, the water quality parameters may vary. Rural and agricultural water demand covers the basic types of water demand, including the population's living and economic needs, animal husbandry, the needs of public utilities, the needs related to the operation of vehicles and machinery, workshops, machines and other purposes, including the own needs of the water pipes, fire-fighting etc. The level of demand is also closely related to the factors influencing the level of individual water consumption. Taking into account the deficiencies in formal and legal regulations, the binding regulations concerning the operation of water supply systems in special conditions have been presented so far. Elements of the benchmarking study on unit water demand indicators in normal and special conditions in rural areas have also been taken into account, guided by the principles and numerical indicators for the calculation of water demand for drinking and business purposes.


2021 ◽  
Vol 9 (1) ◽  
pp. 11
Author(s):  
Gunawan Eko Prihantono ◽  
Gusfan Halik ◽  
Entin Hidayah

Currently, water demand is increasing, both domestic, industrial and agricultural water needs. However, the increase in water demand is not due to an increase in the water availability due to changes in land use and other factors that pose a threat to increased exploitation of water resources. So it is necessary to analyze and evaluate the water needs to anticipate the impact of drought in the Asem-Tekung-Jatirowo sub watersheds. The calculation of water supply and water demand can be carried out using the water balance method, assisted by the WEAP (Evaporation and Water Planning) program, through data integration of streamflow analysis and water user in the river reach. The results showed that the sub-watershed area showed a deficit of water in 2013, with the Jatiroto region having the highest air deficit of 1.58 million m3 or 44.2%. Based on this analysis, urgently needed a recommendation of drought anticipation strategies these are planting patterns to adjust condition of water supply, storage of water reserves, conservation of critical land, and repair of channels that are at risk of water seepage.


Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 364 ◽  
Author(s):  
Mo Li ◽  
Hao Sun ◽  
Vijay Singh ◽  
Yan Zhou ◽  
Mingwei Ma

Allocation and management of agricultural water resources is an emerging concern due to diminishing water supplies and increasing water demands. To achieve economic, social, and environmental goals in a specific irrigation district, decisions should be made subject to the changing water supply and water demand—the two critical random parameters in agricultural water resources management. This paper presents the foundations of a systematic framework for agricultural water resources management, including determination of distribution functions, joint probability of water supply and water demand, optimal allocation of agricultural water resources, and evaluation of various schemes according to agricultural water resources carrying capacity. The maximum entropy method is used to estimate parameters of probability distributions of water supply and demand, which is the basic for the other parts of the framework. The entropy-weight-based TOPSIS method is applied to evaluate agricultural water resources allocation schemes, because it avoids the subjectivity of weight determination and reflects the dynamic changing trend of agricultural water resources carrying capacity. A case study using an irrigation district in Northeast China is used to demonstrate the feasibility and applicability of the framework. It is found that the framework works effectively to balance multiple objectives and provides alternative schemes, considering the combinatorial variety of water supply and water demand, which are conducive to agricultural water resources planning.


2012 ◽  
Vol 40 (2) ◽  
pp. 353-366
Author(s):  
Gamal Abozaid ◽  
Hassan I. Mohammed ◽  
Hassan I. Mostafa
Keyword(s):  

2008 ◽  
Vol 3 (3) ◽  
Author(s):  
Wilhelm Tischendorf ◽  
Hans Kupfersberger ◽  
Christian Schilling ◽  
Oliver Gabriel

Being Austria's fourth largest water-supply company, the Grazer Stadtwerke AG., has ensured the successful water-supply of the Styrian capital with 250.000 inhabitants for many years. The average daily water demand of the area amounts to about 50,000 m3. Approximately 30 % of the total demand is covered by the bulk water supply from the Zentral Wasser Versorgung Hochschwab Süd. The waterworks Friesach and Andritz, which cover the additional 70 % of the water demand, operate by means of artificial groundwater recharge plants where horizontal filter wells serve as drawing shafts. The groundwater recharge systems serve to increase the productivity of the aquifer and to reduce the share of the infiltration from the Mur River. Protection areas have been identified to ensure that the water quality of the aquifer stay at optimal levels. The protection areas are divided into zones indicating various restrictions for usage and planning. Two respective streams serve as the source for the water recharge plants. Different infiltration systems are utilised. Each of the various artificial groundwater recharge systems displays specific advantages and disadvantages in terms of operation as well as maintenance. In order to secure a sustainable drinking water supply the recharge capacity will be increased. Within an experimental setting different mixtures of top soils are investigated with respect to infiltration and retention rates and compared to the characteristics of the existing basins. It can be shown that the current operating sand basin with more than 90% grains in the range between 0.063 and 6.3 mm represents the best combination of infiltration and retention rates. In future experiments the performance of alternative grain size distributions as well as planting the top soil will be tested. Additionally, in order to optimize the additional groundwater recharge structures the composition of the subsurface water regarding its origin is statistically analyzed.


2012 ◽  
Vol 212-213 ◽  
pp. 498-501
Author(s):  
Rui Guo ◽  
Sheng Le Cao

Scientific and reasonable water price is the foundation of beneficial operation of water supply project, and water pricing is on the basis of per cubic meter water supply cost. According to characteristics of water supply project in the plain irrigation area of the Yellow River, a research on calculation methods of agricultural water supply cost is made. Calculation formulas of project lines are put forward and an example was given.


Sign in / Sign up

Export Citation Format

Share Document