Bioactive compounds and biological functions of sea cucumbers as potential functional foods

2018 ◽  
Vol 49 ◽  
pp. 73-84 ◽  
Author(s):  
Cheng Xu ◽  
Rui Zhang ◽  
Zhiyou Wen
Foods ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 246 ◽  
Author(s):  
Ao Shang ◽  
Shi-Yu Cao ◽  
Xiao-Yu Xu ◽  
Ren-You Gan ◽  
Guo-Yi Tang ◽  
...  

Garlic (Allium sativum L.) is a widely consumed spice in the world. Garlic contains diverse bioactive compounds, such as allicin, alliin, diallyl sulfide, diallyl disulfide, diallyl trisulfide, ajoene, and S-allyl-cysteine. Substantial studies have shown that garlic and its bioactive constituents exhibit antioxidant, anti-inflammatory, antibacterial, antifungal, immunomodulatory, cardiovascular protective, anticancer, hepatoprotective, digestive system protective, anti-diabetic, anti-obesity, neuroprotective, and renal protective properties. In this review, the main bioactive compounds and important biological functions of garlic are summarized, highlighting and discussing the relevant mechanisms of actions. Overall, garlic is an excellent natural source of bioactive sulfur-containing compounds and has promising applications in the development of functional foods or nutraceuticals for the prevention and management of certain diseases.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1340
Author(s):  
Ying Kong ◽  
Huan Wang ◽  
Lixin Lang ◽  
Xiaoying Dou ◽  
Jinrong Bai

The bulbs of several Lilium species are considered to be both functional foods and traditional medicine in northern and eastern Asia. Considering the limited information regarding the specific bioactive compounds contributing to the functional properties of these bulbs, we compared the secondary metabolites of ten Lilium bulb samples belonging to five different species, using an ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS)-based secondary metabolomics approach. In total, 245 secondary metabolites were detected; further, more metabolites were detected from purple Lilium bulbs (217 compounds) than from white bulbs (123–171 compounds). Similar metabolite profiles were detected in samples within the same species irrespective of where they were collected. By combining herbal analysis and screening differential metabolites, steroid saponins were considered the key bioactive compounds in medicinal lilies. Of the 14 saponins detected, none were accumulated in the bulbs of L. davidii var. willmottiae, also called sweet lily. The purple bulbs of L. regale accumulated more secondary metabolites, and, notably, more phenolic acid compounds and flavonoids. Overall, this study elucidates the differential metabolites in lily bulbs with varying functions and colors and provides a reference for further research on functional foods and the medicinal efficacy of Lilium species.


2019 ◽  
Vol 38 (03) ◽  
Author(s):  
Kiran Bala ◽  
Aradhita Barmanray

Present study was directed to analyze and compare the bioactive compounds (total phenols, total anthocyanins), vitamins (ascorbic acid, β-carotene, vitamin A), minerals including Ca, Mg, Na, P, K, Fe, Cu, Zn, Co, Mn and heavy metals (Cd, Hg, Pb) of freeze-dried (lyophilized) phalsa pulp and seed powder. In lyophilized pulp powder (LPP) higher amount of total phenols (78.11 mg/100g), total anthocyanin (82.94 mg/100g), ascorbic acid (5.21 mg/100g), β-carotene (0.54 µg/100g), vitamin A (0.89 I.U.) were observed than lyophilized seed powder (LSP). Na, K, Mg and Co (0.41, 0.39, 1.08, 0.46 mg/100g, respectively) were higher in LPP as compared to LSP (0.29, 0.11, 0.76 and 0.40 mg/100g, respectively) whereas, Ca, P and Cu were detected more in LSP. This study opens the prospect of using dry phalsa powder in the preparation of various nutraceutical and functional foods for their therapeutic as well as prophylactic purposes.


2015 ◽  
Vol 172 ◽  
pp. 462-468 ◽  
Author(s):  
Mário Paz ◽  
Patricia Gúllon ◽  
M. Fátima Barroso ◽  
Ana P. Carvalho ◽  
Valentina F. Domingues ◽  
...  

2017 ◽  
Vol 16 (9) ◽  
pp. 714-718 ◽  
Author(s):  
Tonny C. Maigoda ◽  
Darwis . ◽  
Ahmad Rizal ◽  
Emy Yuliantini ◽  
Kamsiah . ◽  
...  

Foods ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 973
Author(s):  
Lin-Lin Jiang ◽  
Xue Gong ◽  
Ming-Yue Ji ◽  
Cong-Cong Wang ◽  
Jian-Hua Wang ◽  
...  

Hyperuricemia is a common metabolic disease that is caused by high serum uric acid levels. It is considered to be closely associated with the development of many chronic diseases, such as obesity, hypertension, hyperlipemia, diabetes, and cardiovascular disorders. While pharmaceutical drugs have been shown to exhibit serious side effects, and bioactive compounds from plant-based functional foods have been demonstrated to be active in the treatment of hyperuricemia with only minimal side effects. Indeed, previous reports have revealed the significant impact of bioactive compounds from plant-based functional foods on hyperuricemia. This review focuses on plant-based functional foods that exhibit a hypouricemic function and discusses the different bioactive compounds and their pharmacological effects. More specifically, the bioactive compounds of plant-based functional foods are divided into six categories, namely flavonoids, phenolic acids, alkaloids, saponins, polysaccharides, and others. In addition, the mechanism by which these bioactive compounds exhibit a hypouricemic effect is summarized into three classes, namely the inhibition of uric acid production, improved renal uric acid elimination, and improved intestinal uric acid secretion. Overall, this current and comprehensive review examines the use of bioactive compounds from plant-based functional foods as natural remedies for the management of hyperuricemia.


Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 272 ◽  
Author(s):  
Antonio Pannico ◽  
Christophe El-Nakhel ◽  
Giulia Graziani ◽  
Marios C. Kyriacou ◽  
Maria Giordano ◽  
...  

Selenium (Se) is considered essential for human nutrition as it is involved in the metabolic pathway of selenoproteins and relevant biological functions. Microgreens, defined as tender immature greens, constitute an emerging functional food characterized by overall higher levels of phytonutrients than their mature counterparts. The nutraceutical value of microgreens can be further improved through Se biofortification, delivering Se-enriched foods and potentially an enhanced content of bioactive compounds. The current study defined the effect of sodium selenate applications at three concentrations (0, 8, and 16 μM Se) on the bioactive compounds and mineral content of coriander, green basil, purple basil, and tatsoi microgreens grown in soilless cultivation. Analytical emphasis was dedicated to the identification and quantification of polyphenols by UHPLC-Q-Orbitrap-HRMS, major carotenoids by HPLC-DAD, and macro micro-minerals by ICP-OES. Twenty-seven phenolic compounds were quantified, of which the most abundant were: Chlorogenic acid and rutin in coriander, caffeic acid hexoside and kaempferol-3-O(caffeoyl) sophoroside-7-O-glucoside in tatsoi, and cichoric acid and rosmarinic acid in both green and purple basil. In coriander and tatsoi microgreens, the application of 16 μM Se increased the total phenols content by 21% and 95%, respectively; moreover, it improved the yield by 44% and 18%, respectively. At the same Se dose, the bioactive value of coriander and tatsoi was enhanced by a significant increase in rutin (33%) and kaempferol-3-O(feruloyl)sophoroside-7-O-glucoside (157%), respectively, compared to the control. In green and purple basil microgreens, the 8 μM Se application enhanced the lutein concentration by 7% and 19%, respectively. The same application rate also increased the overall macroelements content by 35% and total polyphenols concentration by 32% but only in the green cultivar. The latter actually had a tripled chicoric acid content compared to the untreated control. All microgreen genotypes exhibited an increase in the Se content in response to the biofortification treatments, thereby satisfying the recommended daily allowance for Se (RDA-Se) from 20% to 133%. The optimal Se dose that guarantees the effectiveness of Se biofortification and improves the content of bioactive compounds was 16 μM in coriander and tatsoi, and 8 μM in green and purple basil.


Sign in / Sign up

Export Citation Format

Share Document