Dimerumic acid and deferricoprogen produced by Monascus purpureus attenuate liquid ethanol diet-induced alcoholic hepatitis via suppressing NF-κB inflammation signalling pathways and stimulation of AMPK-mediated lipid metabolism

2019 ◽  
Vol 60 ◽  
pp. 103393
Author(s):  
Jhao-Ru Lai ◽  
Bo-Jun Ke ◽  
Ya-Wen Hsu ◽  
Chun-Lin Lee
2001 ◽  
Vol 1 ◽  
pp. 11-11
Author(s):  
David Poyner ◽  
Heather Cater ◽  
Nick Hartell ◽  
Alex Conner ◽  
Debbie Hay ◽  
...  

The best characterised signalling pathway activated by both CGRP and adrenomedullin is stimulation of adenylate cyclase via Gs. However, it is clear that in some circumstances the peptides can activate other signal transduction pathways, e.g., increases in intracellular calcium. Many of these signalling pathways can be observed in cultured cells but it is important also to examine isolated tissues to discover the full repertoire of transduction events. In the rat cerebellum there are receptors that respond to both CGRP and adrenomedullin. These seem to be located postsynaptically on Parallel Fibre nerve terminals and modulate transmission to Purkinje cells. Adrenomedullin acts via cAMP, apparently to augment neurotransmitter release. By contrast, CGRP decreases transmitter release, via a non-cAMP mediated pathway. We are currently examining the role of NO and tyrosine kinases in the responses to these peptides.


1995 ◽  
Vol 14 (2) ◽  
pp. 171-177 ◽  
Author(s):  
S G Beech ◽  
S W Walker ◽  
J R Arthur ◽  
D Lee ◽  
G J Beckett

ABSTRACT The effects of TSH and the activation of the cyclic AMP (cAMP) and Ca2+-phosphatidylinositol (Ca2+-PI) cascades on the activity and expression of the selenoenzyme thyroidal type-I iodothyronine deiodinase (ID-I) have been studied using human thyrocytes grown in primary culture. Stimulation of ID-I activity and expression was obtained with TSH and an analogue of cAMP, 8-bromo-cAMP. In the presence or absence of TSH, the addition of the phorbol ester, phorbol 12-myristate 13-acetate (PMA) together with the calcium ionophore A23187, caused a decrease in ID-I activity; a decrease in ID-I expression was also observed as assessed by cell labelling with [75 Se]selenite. PMA alone had no effect on ID-I activity in the presence or absence of TSH. A23187 alone produced a small but significant reduction in ID-I activity, but only in TSH-stimulated cells. These data provide evidence that the expression of thyroidal ID-I is negatively regulated by the Ca2+-PI cascade, and positively regulated by the cAMP cascade.


2003 ◽  
Vol 369 (2) ◽  
pp. 351-356 ◽  
Author(s):  
Sam A. JOHNSON ◽  
Richard M. DENTON

In isolated rat adipocytes, the insulin stimulation of pyruvate dehydrogenase can be partially inhibited by inhibitors of PI3K (phosphoinositide 3-kinase) and MEK1/2 (mitogen-activated protein kinase/extracellular signal-regulated kinase kinase). In combination, U0126 and wortmannin completely block the insulin stimulation of pyruvate dehydrogenase. It is concluded that the effect of insulin on pyruvate dehydrogenase in rat adipocytes involves two distinct signalling pathways: one is sensitive to wortmannin and the other to U0126. The synthetic phosphoinositolglycan PIG41 can activate pyruvate dehydrogenase but the activation is only approx. 30% of the maximal effect of insulin. This modest activation can be completely blocked by wortmannin alone, suggesting that PIG41 acts through only one of the pathways leading to the activation of pyruvate dehydrogenase.


2020 ◽  
Vol 21 (17) ◽  
pp. 6356 ◽  
Author(s):  
Jin He ◽  
Peiwen Zhang ◽  
Linyuan Shen ◽  
Lili Niu ◽  
Ya Tan ◽  
...  

Short-chain fatty acids (SCFAs), particularly acetate, propionate and butyrate, are mainly produced by anaerobic fermentation of gut microbes. SCFAs play an important role in regulating energy metabolism and energy supply, as well as maintaining the homeostasis of the intestinal environment. In recent years, many studies have shown that SCFAs demonstrate physiologically beneficial effects, and the signalling pathways related to SCFA production, absorption, metabolism, and intestinal effects have been discovered. Two major signalling pathways concerning SCFAs, G-protein-coupled receptors (GPRCs) and histone deacetylases (HDACs), are well recognized. In this review, we summarize the recent advances concerning the biological properties of SCFAs and the signalling pathways in inflammation and glucose and lipid metabolism.


Diabetologia ◽  
1998 ◽  
Vol 41 (1) ◽  
pp. 16-25 ◽  
Author(s):  
M. Peak ◽  
J. J. Rochford ◽  
A. C. Borthwick ◽  
S. J. Yeaman ◽  
L. Agius

1995 ◽  
Vol 311 (2) ◽  
pp. 589-594 ◽  
Author(s):  
J S Wiley ◽  
J R Chen ◽  
G P Jamieson ◽  
P J Thurlow

Recirculation of lymphocytes through the body involves their frequent adhesion to endothelial cells but little is known of the signalling pathways between these two cell types. Lymphocytes from patients with chronic lymphocytic leukaemia were loaded with the Ca(2+)-sensitive indicator, fura 2, and allowed to adhere to either glass or monolayers of human umbilical-vein endothelial cells. Addition of ATP or UTP (1-10 microM) to the superfusate produced a transient rise in cytosolic Ca2+ concentration in the lymphocytes adherent to endothelium (24 of 35 cells). In contrast, ATP or UTP (1-10 microM) had no effect on the cytosolic Ca2+ of lymphocytes attached to glass. As the only lymphocyte receptor for ATP (P2Z class) requires higher ATP concentrations (> 50 microM) for Ca2+ influx and is unresponsive to UTP, the involvement of a lymphocyte P2Z purinoceptor is unlikely. Various agonists including ATP, UTP, 2-methylthioATP, ADP and histamine all stimulated increases in endothelial cytosolic Ca2+ but only ATP and UTP (both agonists for endothelial P2U purinoceptors) triggered Ca2+ transients in adherent lymphocytes. Removal of extracellular Ca2+ did not abolish the ATP-induced rise in cytosolic Ca2+ concentration in lymphocytes adherent to endothelial cells. These findings show that stimulation of endothelial P2U purinoceptors triggers an endothelial-lymphocyte signalling pathway which releases internal Ca2+ in adherent lymphocytes.


1995 ◽  
Vol 23 (2) ◽  
pp. 206S-206S ◽  
Author(s):  
S. KELLY MOULE ◽  
NIGEL J. EDGELL ◽  
GAVIN I. WELSH ◽  
TRICIA A. DIGGLE ◽  
CHRISTOPHER G. PROUD ◽  
...  

1997 ◽  
Vol 25 (4) ◽  
pp. 1238-1242 ◽  
Author(s):  
R. M. Denton ◽  
K. J. Heesom ◽  
S. K. Moule ◽  
N. J. Edgell ◽  
P. Burnett

2005 ◽  
Vol 33 (4) ◽  
pp. 712-714 ◽  
Author(s):  
H.A. Patsos ◽  
D.J. Hicks ◽  
A. Greenhough ◽  
A.C. Williams ◽  
C. Paraskeva

Despite extensive research into the biology of CRC (colorectal cancer), and recent advances in surgical techniques and chemotherapy, CRC continues to be a major cause of death throughout the world. Therefore it is important to develop novel chemopreventive/chemotherapeutic agents for CRC. Cannabinoids are a class of compounds that are currently used in the treatment of chemotherapy-induced nausea and vomiting, and in the stimulation of appetite. However, there is accumulating evidence that they could also be useful for the inhibition of tumour cell growth by modulating key survival signalling pathways. The chemotherapeutic potential for plant-derived and endogenous cannabinoids in CRC therapy is reviewed.


Sign in / Sign up

Export Citation Format

Share Document