scholarly journals (-)-Epicatechin and β-glucan from highland barley grain modulated glucose metabolism and showed synergistic effect via Akt pathway

2021 ◽  
Vol 87 ◽  
pp. 104793
Author(s):  
Ze-Hua Liu ◽  
Bo Li
2021 ◽  
Author(s):  
Zehua Liu ◽  
Bo Li

Recent studies support the view that highland barley as whole grain diet showed anti-hyperglycemic effects, while little information is available about the active compounds that could ameliorate pancreatic β cells...


2021 ◽  
Author(s):  
Xi Zhou ◽  
Junbo Li ◽  
Jin Wang ◽  
Huifang Yang ◽  
Jingzeng Wang ◽  
...  

Abstract Mesenchymal stem cells (MSCs) are widely used to treat and prevent liver ischemia–reperfusion injury (LIRI), which commonly occurs after liver surgery. Lin28 is an RNA-binding protein crucial for early embryonic development, stem cell differentiation/reprogramming, tumorigenesis, and metabolism. However, whether Lin28 can enhance metabolism in human placental MSCs (PMSCs) during hypoxia to improve the protective effect against LIRI remains unclear. First, a Lin28 overexpression construct was introduced into PMSCs; glucose metabolism, the expression of glucose metabolism - and PI3K-AKT pathway-related proteins, and the levels of microRNA Let-7 family members were examined using a glucose metabolism kit, western blots, and real-time quantitative PCR, respectively. Next, treatment with an AKT inhibitor was performed to understand the association of Lin28 with the PI3K-Akt pathway. Subsequently, AML12 cells were co-cultured with PMSCs to construct an in vitro model of PMSC protecting liver cells from hypoxia injury. Finally, C57BL/6J mice were used to establish a partial warm hepatic ischemia–reperfusion model in vivo. Lin28 increased the glycolysis capacity of PMSCs, allowing these cells to produce more energy under hypoxic conditions. Lin28 also activated PI3K-Akt signaling under hypoxic conditions, and AKT inhibition attenuated the effects of Lin28. In addition, Lin28 overexpression was found to protect cells against LIRI-induced liver damage, inflammation, and apoptosis and attenuate hypoxia-induced hepatocyte injury. Inconclusion, Lin28 enhances glucose metabolism under hypoxic conditions in PMSCs, thereby providing protective effects against LIRI via the activation of the PI3K-Akt signaling pathway. Our study first reported the application of gene-modified mesenchymal stem cell-based therapy in LIRI.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Xiaonan Xi ◽  
Ning Liu ◽  
Qianqian Wang ◽  
Yahui Chu ◽  
Zheng Yin ◽  
...  

Abstract PAI-1 plays significant roles in cancer occurrence, relapse and multidrug resistance and is highly expressed in tumours. ACT001, which is currently in phase I clinical trials for the treatment of glioblastoma (GBM). However, the detailed molecular mechanism of ACT001 is still unclear. In this study, we investigated the effects of ACT001 on glioma cell proliferation and clarified its mechanism. We discovered that PAI-1 was the direct target of ACT001 by a cellular thermal shift assay. Then, the interaction between ACT001 and PAI-1 was verified by Biacore assays, thermal stability assays and ACT001 probe assays. Furthermore, from the proteomic analysis, we found that ACT001 directly binds PAI-1 to inhibit the PI3K/AKT pathway, which induces the inhibition of glioma cell proliferation, invasion and migration. Moreover, the combination of ACT001 and cisplatin showed a synergistic effect on the inhibition of glioma in vitro and in vivo. In conclusion, our findings demonstrate that PAI-1 is a new target of ACT001, the inhibition of PAI-1 induces glioma inhibition, and ACT001 has a synergistic effect with cisplatin through the inhibition of the PAI-1/PI3K/AKT pathway.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xue-song Liu ◽  
Jing Zeng ◽  
Yu-xue Yang ◽  
Chun-lei Qi ◽  
Ting Xiong ◽  
...  

Ischemia-reperfusion (I/R) could cause heart irreversible damage, which is tightly combined with glucose metabolism disorder. It is demonstrated that GLUT4 (glucose transporter 4) translocation is critical for glucose metabolism in the cardiomyocytes under I/R injury. Moreover, DRD4 (dopamine receptor D4) modulate glucose metabolism, and protect neurocytes from anoxia/reoxygenation (A/R) injury. Thus, DRD4 might regulate myocardial I/R injury in association with GLUT4-mediated glucose metabolism. However, the effects and mechanisms are largely unknown. In the present study, the effect of DRD4 in heart I/R injury were studied ex vivo and in vitro. For I/R injury ex vivo, DRD4 agonist (PD168077) was perfused by Langendorff system in the isolated rat heart. DRD4 activated by PD168077 improved cardiac function in the I/R-injured heart as determined by the left ventricular developed pressure (LVDP), +dp/dt, and left ventricular end diastolic pressure (LVEDP), and reduced heart damage evidenced by infarct size, the release of troponin T (TNT) and lactate dehydrogenase (LDH). DRD4 activation diminished I/R injury induced apoptosis and enhanced cell viability impaired by I/R injury in cardiomyocyte, showed by TUNEL staining, flow cytometer and CCK8 assay. Furthermore, DRD4 activation did not change total GULT4 protein expression level but increased the membrane GULT4 localization determined by western blot. In terms of mechanism, DRD4 activation increased pPI3K/p-AKT but not the total PI3K/AKT during anoxia/reoxygenation (A/R) injury in vitro. Interestingly, PI3K inhibitor, Wortmannin, blocked PI3K/AKT pathway and depleted the membrane GULT4, and further promoted apoptosis showed by TUNEL staining, flow cytometer, western blot of cleaved caspase 3, BAX and BCL2 expression. Thus, DRD4 activation exerted a protective effect against I/R injury by promoting GLUT4 translocation depended on PI3K/AKT pathway, which enhanced the ability of glucose uptake, and ultimately reduced the apoptosis in cardiomyocytes.


Life Sciences ◽  
2014 ◽  
Vol 94 (2) ◽  
pp. 115-121 ◽  
Author(s):  
Hirotsugu Tanaka ◽  
Shigeru Yoshida ◽  
Hideaki Minoura ◽  
Kenji Negoro ◽  
Akiyoshi Shimaya ◽  
...  

2021 ◽  
Author(s):  
Zhanchi Xu ◽  
Zeyuan Lin ◽  
Jingran Zeng ◽  
Rui Chen ◽  
Chuting Li ◽  
...  

Abstract Background: Abnormalities in lipid and glucose metabolism are are constantly occured in type 2 diabetes (T2DM). However, it can be ameliorated by gentiopicroside (GPS). Considering the key role of fibroblast growth factor receptor 1/phosphatidylinositol 3-kinase/protein kinase B (FGFR1/PI3K/AKT) pathway in T2DM, we explore the possible mechanism of GPS on lipid and glucose metabolism through its effects on FGFR1/PI3K/AKT pathway.Methods: Palmitic acid (PA)-induced HepG2 cells and a db/db mice were used to clarify the role and mechanism of polydatin on lipid and glucose metabolism.Results: GPS ameliorated glucose and lipid metabolism disorders in db/db mice and PA-induced HepG2 cells. Furthermore, GPS activated FGFR1/PI3K/AKT pathway including increased the protein expression of FGFR1 and promoted the phosphorylation of PI3K, AKT and FoxO1. Additionally, knockdown of FGFR1 reversed the activation of PI3K/AKT pathway by GPS.Conclusions: The present study demontrates that GPS ameliorates glucose and lipid metabolism disorders via activation of FGFR1/PI3K/AKT pathway.


Sign in / Sign up

Export Citation Format

Share Document