scholarly journals Water sorption and glass transition temperature of spray dried açai (Euterpe oleracea Mart.) juice

2009 ◽  
Vol 94 (3-4) ◽  
pp. 215-221 ◽  
Author(s):  
Renata V. Tonon ◽  
Alessandra F. Baroni ◽  
Catherine Brabet ◽  
Olivier Gibert ◽  
Dominique Pallet ◽  
...  
2008 ◽  
Vol 85 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Athanasia M. Goula ◽  
Thodoris D. Karapantsios ◽  
Dimitris S. Achilias ◽  
Konstantinos G. Adamopoulos

2011 ◽  
Vol 30 (2) ◽  
pp. 175-184 ◽  
Author(s):  
Vanessa M. Silva ◽  
Louise E. Kurozawa ◽  
Kil J. Park ◽  
Míriam D. Hubinger

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2139
Author(s):  
Bilal Marie ◽  
Raymond Clark ◽  
Tim Gillece ◽  
Seher Ozkan ◽  
Michael Jaffe ◽  
...  

A series of bio-based hydrophobically modified isosorbide dimethacrylates, with para-, meta-, and ortho- benzoate aromatic spacers (ISBGBMA), are synthesized, characterized, and evaluated as potential dental restorative resins. The new monomers, isosorbide 2,5-bis(4-glyceryloxybenzoate) dimethacrylate (ISB4GBMA), isosorbide 2,5-bis(3-glyceryloxybenzoate) dimethacrylate (ISB3GBMA), and isosorbide 2,5-bis(2-glyceryloxybenzoate) dimethacrylate (ISB2GBMA), are mixed with triethylene glycol dimethacrylate (TEGDMA) and photopolymerized. The resulting polymers are evaluated for the degree of monomeric conversion, polymerization shrinkage, water sorption, glass transition temperature, and flexural strength. Isosorbide glycerolate dimethacrylate (ISDGMA) is synthesized, and Bisphenol A glycerolate dimethacrylate (BisGMA) is prepared, and both are evaluated as a reference. Poly(ISBGBMA/TEGDMA) series shows lower water sorption (39–44 µg/mm3) over Poly(ISDGMA/TEGDMA) (73 µg/mm3) but higher than Poly(BisGMA/TEGDMA) (26 µg/mm3). Flexural strength is higher for Poly(ISBGBMA/TEGDMA) series (37–45 MPa) over Poly(ISDGMA/TEGDMA) (10 MPa) and less than Poly(BisGMA/TEGDMA) (53 MPa) after immersion in phosphate-buffered saline (DPBS) for 24 h. Poly(ISB2GBMA/TEGDMA) has the highest glass transition temperature at 85 °C, and its monomeric mixture has the lowest viscosity at 0.62 Pa·s, among the (ISBGBMA/TEGDMA) polymers and monomer mixtures. Collectively, this data suggests that the ortho ISBGBMA monomer is a potential bio-based, BPA-free replacement for BisGMA, and could be the focus for future study.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 425 ◽  
Author(s):  
Edueng ◽  
Bergström ◽  
Gråsjö ◽  
Mahlin

This study shows the importance of the chosen method for assessing the glass-forming ability (GFA) and glass stability (GS) of a drug compound. Traditionally, GFA and GS are established using in situ melt-quenching in a differential scanning calorimeter. In this study, we included 26 structurally diverse glass-forming drugs (i) to compare the GFA class when the model drugs were produced by spray-drying with that when melt-quenching was used, (ii) to investigate the long-term physical stability of the resulting amorphous solids, and (iii) to investigate the relationship between physicochemical properties and the GFA of spray-dried solids and their long-term physical stability. The spray-dried solids were exposed to dry (<5% RH) and humid (75% RH) conditions for six months at 25 °C. The crystallization of the spray-dried solids under these conditions was monitored using a combination of solid-state characterization techniques including differential scanning calorimetry, Raman spectroscopy, and powder X-ray diffraction. The GFA/GS class assignment for 85% of the model compounds was method-dependent, with significant differences between spray-drying and melt-quenching methods. The long-term physical stability under dry condition of the compounds was predictable from GFA/GS classification and glass transition and crystallization temperatures. However, the stability upon storage at 75% RH could not be predicted from the same data. There was no strong correlation between the physicochemical properties explored and the GFA class or long-term physical stability. However, there was a slight tendency for compounds with a relatively larger molecular weight, higher glass transition temperature, higher crystallization temperature, higher melting point and higher reduced glass transition temperature to have better GFA and better physical stability. In contrast, a high heat of fusion and entropy of fusion seemed to have a negative impact on the GFA and physical stability of our dataset.


2014 ◽  
Vol 120 (1) ◽  
pp. 519-524 ◽  
Author(s):  
Roneval Felix de Santana ◽  
Eliseu Ribeiro de Oliveira Neto ◽  
Alysson Vieira Santos ◽  
Cleide Mara Faria Soares ◽  
Álvaro Silva Lima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document