High temperature hardness testing of δ-zirconium hydride: yield stress estimation by analytical and numerical models

2021 ◽  
pp. 153424
Author(s):  
Igor J.S. Cherubin ◽  
Fei Long ◽  
Mark R. Daymond
2021 ◽  
Vol 904 ◽  
pp. 117-123
Author(s):  
Yi Cui ◽  
Yun Fei Zhang ◽  
Yan Guang Han ◽  
Da Lv

The effect of high temperature annealing on microstructure evolution of Ni-24Fe-14Cr-8Mo alloy was investigated through Optical Microscopy (OM), Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and Rockwell Hardness Testing Machine. Three kinds of grain growth patterns were found at different annealing temperatures due to carbides precipitation and dissolution. After a combination of high temperature annealing and aging treatment, the hardness versus time curves performed a parabolic pattern. The highest hardness was achieved under 1070°C/60 minutes treatment, and the desirable annealing time should be 60 minutes to 90 minutes.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1299
Author(s):  
Chen Zhang ◽  
Dongsheng Li ◽  
Xiaoqiang Li ◽  
Yong Li

The tension-compression asymmetry (TCA) behavior of an extruded titanium alloy at high temperatures has been investigated experimentally in this study. Uniaxial tensile and compressive tests were conducted from 923 to 1023 K with various strain rates under quasi-static conditions. The corresponding yield stress and asymmetric strain hardening behavior were obtained and analyzed. In addition, the microstructure at different temperatures and stress states indicates that the extruded TA15 profile exhibits a significant yield stress asymmetry at different testing temperatures. The flow stress and yield stress during tension are greater than compression. The yield stress asymmetry decreases with the increase in temperature. The alloy also exhibits TCA behavior on the strain hardening rate. Its mechanical response during compression is more sensitive than tension. A dynamic recrystallization phenomenon is observed instead of twin generated in tension and compression under high-temperature quasi-static conditions. The grains are elongated along the tensile direction and deformed by about 45° along the compressive load axis. Finally, the TCA of Ti-6.5Al-2Zr-1Mo-1V (TA15) alloy is due to slip displacement. The tensile deformation activates basal <a>, prismatic <a> and pyramidal <c + a> slip modes, while the compressive deformation activates only prismatic <a> and pyramidal <c + a> slip modes.


Author(s):  
Cheng Xu

TerraPower has developed sophisticated computational analysis tools to support the design and fabrication of high temperature components to be used in the Traveling Wave Reactor (TWR). One of the key material properties required to predict material damage and remaining lifetime of key in-reactor components is the thermal creep rupture time. Although TerraPower optimized ferritic-martensitic (FM) HT9 steel has shown consistent improvement in yield stress and creep rupture strength through uniaxial tensile tests, extrapolations of existing test data are still needed to fully support the complex analysis used in the TWR design. Traditional Larson-Miller analysis for creep rupture was used to compare the TerraPower optimized HT9 steel to the existing historical database. The results of the Larson-Miller analysis were compared to the results from the Wilshire analysis to explore the relative advantages and disadvantages of each method. The best estimate values for fitting constants and activation energies were determined for both methods, taking into account the effects of the higher yield stress observed in TerraPower optimized HT9 compared to historic HT9. Likewise, the best estimate creep rupture stresses for TerraPower optimized HT9 at various times and temperatures were determined by extrapolations using both the Larson-Miller and Wilshire analysis. The allowable stresses of historical and TerraPower optimized HT9 steels were compared to those of existing materials (9Cr-1Mo-V) in the ASME high temperature code. The comparison of analysis methods and rupture stresses demonstrate that TerraPower FM steel thermal creep performance and analysis methods are comparable to existing ASME qualified materials for high temperature applications.


Author(s):  
Camille Strozzi ◽  
Moez Ben Houidi ◽  
Julien Sotton ◽  
Marc Bellenoue

The canonical diesel spray A is characterized in an optical Rapid Compression Machine (RCM) at high temperature and density conditions (900 K and 850 K, ρ = 23 kg/m3) using simultaneous high-speed OH* chemiluminescence and two-pulse 355 nm Planar Laser Induced Fluorescence (PLIF). The focus is on the time evolution and the repeatability of the early stages of both cool flame and hot ignition phenomena, and on the time evolution of the fluorescing formaldehyde region in between. In particular, time resolved data related to the cool flame are provided. They show the development of several separated kernels on the spray sides at the onset of formaldehyde appearance. Shortly after this phase, the cool flame region expands at high velocity around the kernels and further downstream towards the richer region at the spray head, reaching finally most of the vapor phase region. The position of the first high temperature kernels and their growth are then characterized, with emphasis on the statistics of their location. These time-resolved data are new and they provide further insights into the dynamics of the spray A ignition. They bring some elements on the underlying mechanisms, which will be useful for the validation and improvement of numerical models devoted to diesel spray ignition.


Author(s):  
Simon Lille ◽  
Wlodzimierz Blasiak ◽  
Magnus Mo¨rtberg ◽  
Tomasz Dobski ◽  
Weihong Yang

High Temperature Air Combustion has already been applied in various industrial furnaces. Steel producers use most of the revamped furnaces. These are: • Batch and continuous heating furnaces in which HRS burners with open flames were used, • Batch and continuous heat treatment furnaces in which HRS burners with radiant tubes were used. Apart from steel industry the HTAC systems were applied to melt aluminium or to incinerate odour, vapour gases for example in pulp and paper industry. In all these applications very high fuel savings (sometimes as high as 60%), reduction of NOx and production increase (by 20–50%) was achieved. Progress in applications of the HTAC increased also needs of more information and data required by furnace and process designers. For this reason study in larger scale where at least one set of regenerative burner systems is installed are very much needed. Aim of such studies is not only to verify furnace performance with respect to the known general advantages of HTAC but are focused on specific problems related to furnace and high-cycle regenerative burners operation, process and product properties or type of fuels used. Parallel to the semi-industrial tests numerical models of furnaces have to be developed and verified. In this work, mainly results of heat flux measurements as well as results of numerical modeling of heat transfer in the HTAC test furnace are presented. Results were obtained for propane combustion at firing rate equal to 200 kW. The general code, STAR-CD, was employed in this work to analyse the HTAC test furnace numerically. HTAC test furnace at Royal Institute of Technology (KTH) with capacity of 200 kW was used in this work. The furnace is equipped with two different high-cycle regenerative systems (HRS). In both systems the “honeycomb” regenerator is used. The two-burner system is made of two pairs (four burners) of high cycle-regenerative burners with switching time between 10 and 40 seconds. HTAC test furnace is equipped with four air-cooled tubes to take away heat from the furnace. The total radiative heat flux measured in the HTAC furnace shows very uniform distribution over the whole combustion chamber. For total radiative heat flux, the values are in the range of 110–130 kW/m2 as measured by means of the total radiative heat flow meter at the furnace temperature 1100 C. Average total radiation flux on the top furnace wall is as high as 245.5 kW/m2 as well as total incident radiation flux. Total radiation heat flux on the air-cooled tube surface is very uniform along and around the tubes. Average radiant heat flux taken away by air cool tube is 35.46 kW/m2.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4268
Author(s):  
Věra Vodičková ◽  
Martin Švec ◽  
Pavel Hanus ◽  
Pavel Novák ◽  
Antonín Záděra ◽  
...  

The effect of phase composition and morphology on high-temperature strength in the compression of Fe-Al-Si-based iron aluminides manufactured by casting was investigated. The structure and high-temperature strength in the compression of three alloys—Fe28Al5Si, Fe28Al5Si2Mo, and Fe28Al5Si2Ti—were studied. Long-term (at 800 °C for 100 h) annealing was performed for the achievement of structural stability. The phase composition and grain size of alloys were primarily described by means of scanning electron microscopy equipped with energy dispersive analysis and Electron Backscatter Diffraction (EBSD). The phase composition was verified by X-ray diffraction (XRD) analysis. The effect of Mo and Ti addition as well as the effect of long-term annealing on high-temperature yield stress in compression were investigated. Both additives—Mo and Ti—affected the yield stress values positively. Long-term annealing of Fe28Al5Si-X iron aluminide alloyed with Mo and Ti deteriorates yield stress values slightly due to grain coarsening.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Hugo Duwiquet ◽  
Laurent Arbaret ◽  
Laurent Guillou-Frottier ◽  
Michael J. Heap ◽  
Mathieu Bellanger

Abstract The present study aims to understand the potential of a new and novel type of geothermal play system for high temperature and electricity production: crustal fault zones (CFZ). According to geological and geophysical data, the Pontgibaud fault zone (French Massif Central) is suspected to host an active hydrothermal system at a depth of a few kilometers. The deep geometry of the fault zone and the permeability distribution are the main unknown parameters that are required to assess the geothermal potential of the Pontgibaud site. Structural and thin-section observations, laboratory permeability and connected porosity measurements and X-ray micro-tomography observations suggest that the hydrothermal system behaves like a double matrix-fracture permeability reservoir. Numerical modeling in which we varied the fault dip and the ratio between the fault zone permeability and host rock, R, was performed. Results indicate that three main convective regimes can be identified (weak convection, single cellular-type convection and bicellular convection). For a sufficiently high fault zone permeability (> 1 × 10−15 m2), buoyancy-driven flow creates a positive thermal anomaly of several tens of °C at a depth of 2–5 km. For a vertical fault zone, the thermal anomaly is larger for higher R values. Numerical models, then applied to the geologically constrained Pontgibaud fault zone, show that a temperature of 150 °C at a depth of 2500 m can be obtained for a fault zone permeability of 1.6 × 10−14 m2. Based on a multi-disciplinary approach, this work establishes a potential predictive tool for future high-temperature geothermal operations within basement rocks hosting large-scale fault systems.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1098 ◽  
Author(s):  
Xuetao Lyu ◽  
Yang Xu ◽  
Qian Xu ◽  
Yang Yu

This study investigated the axial compressive performance of six thin-walled concrete-filled steel tube (CFST) square column specimens with steel bar stiffeners and two non-stiffened specimens at constant temperatures of 20 °C, 100 °C, 200 °C, 400 °C, 600 °C and 800 °C. The mechanical properties of the specimens at different temperatures were analyzed in terms of the ultimate bearing capacity, failure mode, and load–displacement curve. The experiment results show that at high temperature, even though the mechanical properties of the specimens declined, leading to a decrease of the ultimate bearing capacity, the ductility and deformation capacity of the specimens improved inversely. Based on finite element software ABAQUS, numerical models were developed to calculate both temperature and mechanical fields, the results of which were in good agreement with experimental results. Then, the stress mechanism of eight specimens was analyzed using established numerical models. The analysis results show that with the increase of temperature, the longitudinal stress gradient of the concrete in the specimen column increases while the stress value decreases. The lateral restraint of the stiffeners is capable of restraining the steel outer buckling and enhancing the restraint effect on the concrete.


Author(s):  
Peter Carter ◽  
T.-L. (Sam) Sham ◽  
Robert I. Jetter

Proposals for high temperature design methods have been developed for primary loads, creep-fatigue and strain limits. The methodologies rely on a common basis and assumption, that elastic, perfectly plastic analysis based on appropriate properties reflects the ability of loads and stress to redistribute for steady and cyclic loading for high temperature as well as for conventional design. The cyclic load design analyses rely on a further key property, that a cyclic elastic-plastic solution provides an upper bound to displacements, strains and local damage rates. The primary load analysis ensures that the design load is in equilibrium with the code allowable stress, taking into account: i) The stress state dependent (multi-axial) rupture criterion, ii) The limit to stress re-distribution defined by the material creep law. The creep-fatigue analysis is focused on the cyclic creep damage calculation, and uses conventional fatigue and creep-fatigue damage calculations. It uses a temperature-dependent pseudo “yield” stress defined by the material yield and rupture data to identify cycles which will not cause creep damage > 1 for the selected life. Similarly the strain limits analysis bounds cyclic strain accumulation. It also uses a temperature-dependent pseudo “yield” stress defined by the material yield and creep strain accumulation data to identify cycles which will not cause average (membrane) inelastic strain > 1% for the design life. The paper gives an overview of the background and justification of these statements, and examples.


Sign in / Sign up

Export Citation Format

Share Document