Sunlight mediated synthesis of silver nanoparticles by a novel actinobacterium (Sinomonas mesophila MPKL 26) and its antimicrobial activity against multi drug resistant Staphylococcus aureus

Author(s):  
Deene Manikprabhu ◽  
Juan Cheng ◽  
Wei Chen ◽  
Anil Kumar Sunkara ◽  
Sunilkumar B. Mane ◽  
...  
2012 ◽  
Vol 436 (1-2) ◽  
pp. 659-676 ◽  
Author(s):  
Subhankari Prasad Chakraborty ◽  
Sumanta Kumar Sahu ◽  
Panchanan Pramanik ◽  
Somenath Roy

2021 ◽  
Vol 10 (1) ◽  
pp. 851-859
Author(s):  
Lebogang Mogole ◽  
Wesley Omwoyo ◽  
Elvera Viljoen ◽  
Makwena Moloto

Abstract The resistance of microorganisms towards antibiotics remains a big challenge in medicine. Silver nanoparticles (AgNPs) received attention recently for their characteristic nanosized features and their ability to display antimicrobial activities. This work reports the synthesis of AgNPs using the Citrus sinensis peels extract in their aqueous, mild, and less hazardous conditions. The effect of concentration variation (1%, 2%, and 3%) of the plant extracts on the size and shape of the AgNPs was investigated. The antimicrobial activities were tested against gram-positive Staphylococcus aureus and gram-negative Klebsiella pneumoniae. Absorption spectra confirmed the synthesis by the surface Plasmon resonance peaks in the range 400–450 nm for all the AgNPs. FTIR spectra confirmed that Citrus sinensis peels extract acted as both reducing and surface passivating agent for the synthesized AgNPs. TEM revealed spherical AgNPs with average size of 12 nm for 3% concentration as compared to the agglomeration at 1% and 2%. All the AgNPs synthesized using Citrus sinensis peels extracts (1%, 2%, and 3%) exhibited antimicrobial activity against both gram-positive and negative bacteria. These results indicated a simple, fast, and inexpensive synthesis of silver nanoparticles using the Citrus sinensis peels extract that has promising antibacterial activity.


2021 ◽  
Vol 21 (10) ◽  
pp. 5120-5130
Author(s):  
Hui Long ◽  
Wei-Cong Kuang ◽  
Shi-Liang Wang ◽  
Jing-Xian Zhang ◽  
Lang-Huan Huang ◽  
...  

Poly(cyclotriphosphazene-co-4,4’-diaminodiphenyl ether) (PPO) microspheres were prepared via a precipitation polymerization method, using hexachlorocyclotriphosphazene (HCCP) and 4,4’-diaminodiphenyl ether (ODA) as monomers. Silver-loaded PPO (PPOA) microspheres were generated by the in situ loading of silver nanoparticles onto the surface by Ag+ reduction. Our results showed that PPOA microspheres were successfully prepared with a relatively uniform distribution of silver nanoparticles on microsphere surfaces. PPOA microspheres had good thermal stability and excellent antibacterial activity towards Escherichia coli and Staphylococcus aureus. Furthermore, PPOA microspheres exhibited lower cytotoxicity when compared to citrate-modified silver nanoparticles (c-Ag), and good sustained release properties. Our data indicated that polyphosphazene-based PPOA microspheres are promising antibacterial agents in the biological materials field.


2014 ◽  
Vol 2 (3) ◽  
pp. 235-239 ◽  
Author(s):  
MohamedA. Abd-Elhakeem ◽  
Ingy Badawy ◽  
MohamedA. Hamzawy ◽  
Amira Raafat ◽  
AhmedM. Elsayed ◽  
...  

2018 ◽  
Vol 930 ◽  
pp. 212-217
Author(s):  
Marcos Antônio Guerra ◽  
Jeferson Prado Swerts ◽  
Mei Abe Funcia ◽  
Maria Gabriela Nogueira Campos

This study evaluated the antimicrobial activity of PET-Silver nanocomposite filaments at different concentrations (0, 0.180%, 0.135%, 0.090%, 0.045% and 0.022% w/w) of silver nanoparticles in order to determine the minimum inhibitory concentration and minimum bactericidal concentration of silver incorporated in the PET matrix. The in vitro antibacterial activity was evaluated by the AATCC standard 100: 2012 method, against Staphylococcus aureus ATCC 6538, and Klebsiella pneumonia ATCC 4532. The filaments were tested after one and twenty-one months of preparation to evaluate the effect of time on the antimicrobial activity of the nanocomposites. Moreover, the antimicrobial activity was also evaluated after dyeing the filaments. The silver-free PET filaments have not demonstrated antimicrobial activity and cytotoxicity against human dermal fibroblasts. Nevertheless, excepted for the filament with 0.022% of silver nanoparticles, all PET-Silver nanocomposites reduced more than 99% the colony-forming units (CFU) of Staphylococcus aureus and Klebsiella pneumonia after one and twenty-one months of preparation. This suggests that the MIC of silver nanoparticles incorporated in the PET matrix is lower than 220 ppm (w/w) and the MBC is between 0.022 and 0.045% (w/w). However, after the dyeing process, no antimicrobial activity was observed for any PET-Silver nanocomposite filaments. This may be attributed to the release of silver from the PET matrix during the dyeing process or to the reaction/inactivation of the silver ions by the salts used in this chemical treatment.


Author(s):  
Manashi Garg ◽  
Banasmita Devi ◽  
Rashna Devi

 Objectives: Hydrocotyle sibthorpiodes is known to contain several phytoconstituents which are constantly involved in the formation of Silver nanoparticles that may affect several multi-drug resistant microbes. Therefore, the study was undertaken to evaluate the efficacy of different concentration of nano silver solution on three bacterial isolates. It was also aimed to qualitatively assess the different phytoconstituents responsible for the synthesis. Methods: Three bacterial isolates of Klebsiella pneumonia, Pseudomonas aeroginosa and Staphylococcus aureus were identified. Synthesis of AgNPs with different concentration (2/4/6/8/10μl/ml) was done and applied to the selected isolates. The phytochemical compounds of the ethyl acetate extract were assayed by several colored reactions qualitatively. Results: The size and stability biosynthesis of the metallic silver nanoparticles were confirmed by photophysical characterization as well as SEM (Scanning Electron Microscopy), XRD (XRay Diffraction), Zeta potential and DLS (Dynamic Light Scattering) with an average size of 13.37 ±10 nm. The increasing concentration of the particle solution showed significant inhibition zone for all the three isolates viz., Klebsiella pneumonia, Pseudomonas aeroginosa and Staphylococcus. aureus showing the value of 3.0±0.17, 2.7±0.32 and 3.6±0.57 respectively for 10 μl/ml concentration. Phytochemical screening of the whole plant extract also revealed an array of bioactive compounds which may have an effective role in the reduction process. Conclusion: The study demonstrated a simple, efficient and eco-friendly synthesis of stable silver nanoparticles from the ethyl acetate extract of Hydrocotyle sibthorpiodes having fairly superior antimicrobial activity against human pathogens.


RSC Advances ◽  
2019 ◽  
Vol 9 (30) ◽  
pp. 17002-17015 ◽  
Author(s):  
Kishore Chand ◽  
M. Ishaque Abro ◽  
Umair Aftab ◽  
Ahmer Hussain Shah ◽  
Muhammad Nazim Lakhan ◽  
...  

The silver nanoparticles were synthesized from the neem leaves, onions, and tomato extracts, and the antibacterial activity of the particles was studied.


2020 ◽  
Vol 21 (16) ◽  
pp. 5632
Author(s):  
Jong-Kook Lee ◽  
Yoonkyung Park

Novel antibiotic drugs are urgently needed because of the increase in drug-resistant bacteria. The use of antimicrobial peptides has been suggested to replace antibiotics as they have strong antimicrobial activity and can be extracted from living organisms such as insects, marine organisms, and mammals. HPA3NT3-A2 ([Ala1,8] HPA3NT3) is an antimicrobial peptide that is an analogue of the HP (2–20) peptide derived from Helicobacter pylori ribosomal protein L1. Although this peptide was shown to have strong antimicrobial activity against drug-resistant bacteria, it also showed lower toxicity against sheep red blood cells (RBCs) and HaCaT cells compared to HPA3NT3. The l-Lys residues of HPA3NT3-A2 was substituted with d-Lys residues (HPA3NT3-A2D; [d-Lys2,5,6,9,10,15] HPA3NT3-A2) to prevent the cleavage of peptide bonds by proteolytic enzymes under physiological conditions. This peptide showed an increased half-life and maintained its antimicrobial activity in the serum against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) (pathogen). Furthermore, the antimicrobial activity of HPA3NT3-A2D was not significantly affected in the presence of mono- or divalent ions (Na+, Mg2+, Ca2+). Finally, l- or d-HPA3NT3-A2 peptides exhibited the strongest antimicrobial activity against antibiotic-resistant bacteria and failed to induce resistance in Staphylococcus aureus after 12 passages.


Sign in / Sign up

Export Citation Format

Share Document