1127 HUMAN ADIPOSE TISSUE-DERIVED STEM CELLS DIFFERENTIATED INTO SMOOTH MUSCLE AND ENDOTHELIAL CELLS FOR TREATMENT OF ERECTILE DYSFUNCTION

2011 ◽  
Vol 185 (4S) ◽  
Author(s):  
Hazem Orabi ◽  
Tom Lue
2006 ◽  
Vol 103 (32) ◽  
pp. 12167-12172 ◽  
Author(s):  
L. V. Rodriguez ◽  
Z. Alfonso ◽  
R. Zhang ◽  
J. Leung ◽  
B. Wu ◽  
...  

2022 ◽  
Vol 12 (2) ◽  
pp. 427-431
Author(s):  
Wenju Yan ◽  
Yan Li ◽  
Gaiqin Li ◽  
Luhua Yin ◽  
Huanyi Zhang ◽  
...  

Cardiovascular diseases, including congenital and acquired cardiovascular diseases, impose a severe burden on healthcare systems worldwide. Although bone marrow-derived stem cells (BMSCs) therapy can be an effective therapeutic strategy for the heart disease, relatively low abundance, difficult accessibility, and small tissue volume hinder the clinical usefulness. Adipose tissue-derived stem cells (ADSCs) show similar potential with BMSCs to differentiate into lineages and tissues, such as smooth muscle cells, endothelial cells, and adipocytes, with attractiveness of obtaining adipose tissue easily and repeatedly, and a simple separation procedure. We briefly summarize the current understanding of the cardiomyocytes differentiated from ADSCs


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 495
Author(s):  
Prakash Gangadaran ◽  
Ramya Lakshmi Rajendran ◽  
Ji Min Oh ◽  
Eun Jung Oh ◽  
Chae Moon Hong ◽  
...  

Angiogenesis is defined as the generation of new blood vessels or the sprouting of endothelial cells from a pre-existing vascular network. Angiogenesis occurs during the growth and development of an organism, the response of organs or tissues to injury, and during cancer development and progression. The majority of studies on stem-cell-derived extracellular vesicles (EVs) have used cell lines, and have primarily focused on well-known solitary proteins. Here, we isolated stem cells from human adipose tissue (ADSCs), and we isolated EVs from them (ADSC-EVs). The ADSC-EVs were characterised and 20 angiogenic proteins were analysed using an angiogenic antibody array. Furthermore, we analysed the ability of ADSC-EVs to induce angiogenesis in vitro and in vivo. ADSC-EVs were positive for CD81 and negative for GM130, calnexin, and cytochrome-C. ADSC-EVs showed typical EV spherical morphology and were ~200 nm in size. ADSC-EVs were found to contain angiogenic proteins as cargo, among which interleukin 8 (IL-8) was the most abundant, followed by chemokine (C-C motif) ligand 2 (CCL2), a tissue inhibitor of metalloproteinases 1 (TIMP-1), TIMP-2, and vascular endothelial growth factor-D (VEGF-D). ADSC-EVs treatment increased the proliferation, migration, total vessel length, total number of junctions, and junction density of endothelial cells in vitro. The results of an in vivo Matrigel plug assay revealed that ADSC-EVs induced more blood vessels in the Matrigel compared with the control. These results demonstrate that ADSC-EVs contain angiogenic proteins as cargo and promote angiogenesis in vitro and in vivo. Therefore, ADSC-EVs have potential for therapeutic use in ischaemia.


Diabetes ◽  
1989 ◽  
Vol 38 (6) ◽  
pp. 710-717 ◽  
Author(s):  
P. A. Kern ◽  
M. E. Svoboda ◽  
R. H. Eckel ◽  
J. J. Van Wyk

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1485
Author(s):  
Adrian Sowka ◽  
Pawel Dobrzyn

Studies of adipose tissue biology have demonstrated that adipose tissue should be considered as both passive, energy-storing tissue and an endocrine organ because of the secretion of adipose-specific factors, called adipokines. Adiponectin is a well-described homeostatic adipokine with metabolic properties. It regulates whole-body energy status through the induction of fatty acid oxidation and glucose uptake. Adiponectin also has anti-inflammatory and antidiabetic properties, making it an interesting subject of biomedical studies. Perivascular adipose tissue (PVAT) is a fat depot that is conterminous to the vascular wall and acts on it in a paracrine manner through adipokine secretion. PVAT-derived adiponectin can act on the vascular wall through endothelial cells and vascular smooth muscle cells. The present review describes adiponectin’s structure, receptors, and main signaling pathways. We further discuss recent studies of the extent and nature of crosstalk between PVAT-derived adiponectin and endothelial cells, vascular smooth muscle cells, and atherosclerotic plaques. Furthermore, we argue whether adiponectin and its receptors may be considered putative therapeutic targets.


Sign in / Sign up

Export Citation Format

Share Document