CD94 Expression Patterns in Reactive and Neoplastic T-cell and NK-cell Proliferations

2021 ◽  
pp. 106614
Author(s):  
Hong Fang ◽  
Wei Wang ◽  
Tapan M. Kadia ◽  
Siba El Hussein ◽  
Sa A. Wang ◽  
...  
PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e64936 ◽  
Author(s):  
Meike Hermes ◽  
Christina Albrecht ◽  
Annette Schrod ◽  
Markus Brameier ◽  
Lutz Walter

2018 ◽  
Author(s):  
Fergal J Duffy ◽  
Ethan G. Thompson ◽  
Thomas J. Scriba ◽  
Daniel E Zak

AbstractBackgroundCurrent diagnostics are inadequate to meet the challenges presented by coinfection with Mycobacterium tuberculosis (Mtb) and HIV, the leading cause of death for HIV-infected individuals. Improved characterisation of Mtb/HIV coinfection as a distinct disease state may lead to better identification and treatment of affected individuals.MethodsFour previously published TB and HIV co-infection related datasets were used to train and validate multinomial machine learning classifiers that simultaneously predict TB and HIV status. Classifier predictive performance was measured using leave-one-out cross validation on the training set and blind predictive performance on multiple test sets using area under the ROC curve (AUC) as the performance metric. Linear modelling of signature gene expression was applied to systematically classify genes as TB-only, HIV-only or combined TB/HIV.ResultsThe optimal signature discovered was a single 10-gene random forest multinomial signature that robustly discriminates active tuberculosis (TB) from other non-TB disease states with improved performance compared with previously published signatures (AUC: 0. 87), and specifically discriminates active TB/HIV co-infection from all other conditions (AUC: 0.88). Signature genes exhibited a variety of transcriptional patterns including both TB-only and HIV-only response genes and genes with expression patterns driven by interactions between HIV and TB infection states, including the CD8+ T-cell receptor LAG3 and the apoptosis-related gene CERKL.ConclusionsBy explicitly including distinct disease states within the machine learning analysis framework, we developed a compact and highly diagnostic signature that simultaneously discriminates multiple disease states associated with Mtb/HIV co-infection. Examination of the expression patterns of signature genes suggests mechanisms underlying the unique inflammatory conditions associated with active TB in the presence of HIV. In particular, we observed that disregulation of CD8+ effector T-cell and NK-cell associated genes may be an important feature of Mtb/HIV co-infection.


2017 ◽  
Vol 94 (1) ◽  
pp. 159-168 ◽  
Author(s):  
Sanjay de Mel ◽  
Jenny Bei Li ◽  
Muhammad Bilal Abid ◽  
Tiffany Tang ◽  
Hui Ming Tay ◽  
...  

MicroRNA ◽  
2015 ◽  
Vol 4 (2) ◽  
pp. 117-122 ◽  
Author(s):  
Nato Teteloshvili ◽  
Katarzyna Smigielska-Czepiel ◽  
Bart-Jan Kroesen ◽  
Elisabeth Brouwer ◽  
Joost Kluiver ◽  
...  

2009 ◽  
Vol 33 (4) ◽  
pp. 342-350 ◽  
Author(s):  
David C. Linch ◽  
Adrian C. Newland ◽  
Alan L. Tumbull ◽  
Lesley J. Knott ◽  
Alan MacWhannel ◽  
...  

2021 ◽  
Vol 22 (7) ◽  
pp. 3489
Author(s):  
Takayuki Morimoto ◽  
Tsutomu Nakazawa ◽  
Ryosuke Matsuda ◽  
Fumihiko Nishimura ◽  
Mitsutoshi Nakamura ◽  
...  

Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor in adults. Natural Killer (NK) cells are potent cytotoxic effector cells against tumor cells inducing GBM cells; therefore, NK cell based- immunotherapy might be a promising target in GBM. T cell immunoglobulin mucin family member 3 (TIM3), a receptor expressed on NK cells, has been suggested as a marker of dysfunctional NK cells. We established TIM3 knockout in NK cells, using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9). Electroporating of TIM3 exon 2- or exon 5-targeting guide RNA- Cas9 protein complexes (RNPs) inhibited TIM3 expression on NK cells with varying efficacy. T7 endonuclease I mutation detection assays showed that both RNPs disrupted the intended genome sites. The expression of other checkpoint receptors, i.e., programmed cell death 1 (PD1), Lymphocyte-activation gene 3 (LAG3), T cell immunoreceptor with Ig and ITIM domains (TIGIT), and TACTILE (CD96) were unchanged on the TIM3 knockout NK cells. Real time cell growth assays revealed that TIM3 knockout enhanced NK cell–mediated growth inhibition of GBM cells. These results demonstrated that TIM3 knockout enhanced human NK cell mediated cytotoxicity on GBM cells. Future, CRISPR-Cas9 mediated TIM3 knockout in NK cells may prove to be a promising immunotherapeutic alternative in patient with GBM.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A275-A275
Author(s):  
Rebecca Ward ◽  
Elena Paltrinieri ◽  
Marilyn Marques ◽  
Priyadarshini Iyer ◽  
Sylvia Dietrich ◽  
...  

BackgroundT-cell immunoreceptor with Ig and ITIM domains (TIGIT) is an important negative regulator of the immune response to cancer that contributes to resistance/relapse to anti-PD-1 therapy.1 In clinical trials, anti-human (h) TIGIT antibodies have shown promising activity in combination with anti-PD-1/PD-L1 antibodies for the treatment of various solid tumors.2 However, the optimal format for anti-TIGIT antibodies remains controversial. Here we describe a novel Fcγ receptor (FcγR)-dependent mechanism of action that is critical for enhancing T and NK cell anti-tumor immunity, and, further informs on the optimal design of anti-TIGIT antibodies.MethodsWe investigated a panel of Fc-silent, Fc-competent, and Fc-engineered anti-mouse (m) TIGIT antibody variants in syngeneic murine CT26 tumor-bearing or B16F10 pseudo-metastases models. To further elucidate the relative contribution of T and NK cells in controlling tumor growth, we assessed the activity of Fc-engineered anti-TIGIT antibodies in NK cell-depleted or T cell-deficient (Nu-Foxn1nu) CT26 tumor-bearing mice. Immune-related pharmacodynamic changes in the tumor microenvironment were assessed by flow cytometry. We further validated these findings in primary human T and NK cell activation assays using Fc-engineered anti-human TIGIT antibodies.ResultsThe Fc-engineered anti-mTIGIT antibody, which demonstrates enhanced binding to mouse FcγRIV, was the only variant to deliver single agent anti-tumor activity. The Fc-enhanced variant outperformed the Fc-competent variant while the Fc-inert variant had no anti-tumor activity. Tumor control by anti-mTIGIT antibodies was not dependent on Treg depletion, but rather on increased frequency of CD8+ T cells and activated NK cells (Ki67, IFNγ, CD107a and TRAIL) in the tumor microenvironment. Concordant with observations in the mouse, Fc-engineered anti-hTIGIT antibodies with improved binding to FcγRIIIA demonstrate superior T and NK cell activation in PBMC-based assays compared to a standard hIgG1 variant. Notably, superior activity of the Fc-engineered anti-hTIGIT antibody was observed from PBMC donors that express either high or low affinity FcγRIIIA. Blockade of FcγRIIIA or depletion of CD14+ and CD56+ cells reduced the functional activity of the Fc-enhanced anti-TIGIT antibody, confirming the requirement for FcγR co-engagement to maximize T cell responses.ConclusionsOur data demonstrate the importance of FcγR co-engagement by anti-TIGIT antibodies to promote immune activation and tumor control. First generation anti-TIGIT antibodies are not optimally designed to co-engage all FcγRIIIA variants. However, Fc-enhanced anti-TIGIT antibodies unlock a novel FcγR-dependent mechanism of action to enhance T and NK cell-dependent anti-tumor immunity and further improve therapeutic outcomes.ReferencesJohnston RJ, et al., The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell 2014; 26:923–37.Rodriguez-Abreu D, et al., Primary analysis of a randomized, double-blind, phase II study of the anti-TIGIT antibody tiragolumab (tira) plus atezolizumab (atezo) versus placebo plus atezo as first-line (1L) treatment in patients with PD-L1-selected NSCLC (CITYSCAPE). Journal of Clinical Oncology 2020; 38:15_suppl, 9503–9503.


Sign in / Sign up

Export Citation Format

Share Document