Hypertension aggravates glomerular dysfunction with oxidative stress in a rat model of diabetic nephropathy

Life Sciences ◽  
2007 ◽  
Vol 80 (15) ◽  
pp. 1364-1372 ◽  
Author(s):  
Tadahisa Tomohiro ◽  
Toshio Kumai ◽  
Takeo Sato ◽  
Yuko Takeba ◽  
Shinichi Kobayashi ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Chang-Chun Hsiao ◽  
Wei-Han Huang ◽  
Kuang-Hung Cheng ◽  
Chien-Te Lee

Background. Diabetic nephropathy is the most common cause of end-stage renal disease. Traditional therapy for diabetic nephropathy has focused on supportive treatment, and there is no significant effective therapy. We investigated the effect of low-energy extracorporeal shock wave therapy on a diabetic nephropathy rat model. Methods. Streptozotocin-induced diabetic nephropathy rats were treated with six sessions of low-energy extracorporeal shock wave therapy (weekly for six consecutive weeks) or left untreated. We assessed urinary creatinine and albumin, glomerular volume, renal fibrosis, podocyte number, renal inflammation, oxidative stress, and tissue repair markers (SDF-1 and VEGF) six weeks after the completion of treatment. Results. The six-week low-energy extracorporeal shock wave therapy regimen decreased urinary albumin excretion as well as reduced glomerular hypertrophy and renal fibrosis in the rat model of diabetic nephropathy. Moreover, low-energy extracorporeal shock wave therapy increased podocyte number in diabetic nephropathy rats. This was likely primarily attributed to the fact that low-energy extracorporeal shock wave therapy reduced renal inflammation and oxidative stress as well as increased tissue repair potency and cell proliferation. Conclusions. Low-energy extracorporeal shock wave therapy preserved kidney function in diabetic nephropathy. Low-energy extracorporeal shock wave therapy may serve as a novel noninvasive and effective treatment of diabetic nephropathy.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Yingli Jin ◽  
Yan Shi ◽  
Yinggang Zou ◽  
Chunsheng Miao ◽  
Bo Sun ◽  
...  

The present study aims to examine the protective effect of fenugreek and the underlying mechanism against the development of diabetic nephropathy (DN) in streptozotocin- (STZ-) induced diabetic rats. A rat model of diabetes was successfully established by direct injection of STZ and then the rats were administered an interventional treatment of fenugreek. Parameters of renal function, including blood glucose, albuminuria, hemoglobin A1c (HbA1c), dimethyl formamide (DMF), blood urine nitrogen (BUN), serum creatinine (Scr), and kidney index (KI), were detected in the three groups (Con, DN, and DF). Oxidative stress was determined by the activity of antioxidase. Extracellular matrix (ECM) accumulation and other morphological alterations were evaluated by means of immunohistochemistry and electron microscope. Quantitive (q)PCR was employed to detect the mRNA expression of transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF) and protein expression was determined with western blot analysis. DN rats in the present study demonstrated a significant renal dysfunction, ECM accumulation, pathological alteration, and oxidative stress, while the symptoms were evidently reduced by fenugreek treatment. Furthermore, the upregulation of TGF-β1 and CTGF at a transcriptional and translational level in DN rats was distinctly inhibited by fenugreek. Consequently, fenugreek prevents DN development in a STZ-induced diabetic rat model.


2018 ◽  
Vol 105 ◽  
pp. 290-298 ◽  
Author(s):  
Nawal M. Al-Rasheed ◽  
Nouf M. Al-Rasheed ◽  
Yieldez A. Bassiouni ◽  
Iman H. Hasan ◽  
Maha A. Al-Amin ◽  
...  

2016 ◽  
Vol 57 (3) ◽  
pp. 664 ◽  
Author(s):  
Bo Hwan Kim ◽  
Eun Soo Lee ◽  
Ran Choi ◽  
Jarinyaporn Nawaboot ◽  
Mi Young Lee ◽  
...  

2020 ◽  
Vol 18 (3) ◽  
pp. 260-265
Author(s):  
Xu Lin ◽  
Zheng Xiaojun ◽  
Lv Heng ◽  
Mo Yipeng ◽  
Tong Hong

The purpose of this study was to evaluate the protective effect of swertiamarin on heart failure. To this end, a rat model of heart failure was established via left coronary artery ligation. Infarct size of heart tissues was determined using triphenyl tetrazolium chloride staining. Echocardiography was performed to evaluate cardiac function by the determination of ejection fraction, left ventricular internal dimension in diastole and left ventricular internal dimension in systole. The effect of swertiamarin on oxidative stress was evaluated via enzyme-linked immunosorbent assay. The mechanism was evaluated using western blot. Administration of swertiamarin reduced the infarct size of heart tissues in rat models with heart failure. Moreover, swertiamarin treatment ameliorated the cardiac function, increased ejection fraction and fractional shortening, decreased left ventricular internal dimension in diastole and left ventricular internal dimension in systole. Swertiamarin improved oxidative stress with reduced malondialdehyde, while increased superoxide dismutase, glutathione, and GSH peroxidase. Furthermore, nuclear-factor erythroid 2-related factor 2, heme oxygenase and NAD(P)H dehydrogenase (quinone 1) were elevated by swertiamarin treatment in heart tissues of rat model with heart failure. Swertiamarin alleviated heart failure through suppression of oxidative stress response via nuclear-factor erythroid 2-related factor 2/heme oxygenase-1 pathway providing a novel therapeutic strategy for heart failure.


2020 ◽  
Vol 10 ◽  
Author(s):  
Dhrubajyoti Sarkar ◽  
Sekhar Kumar Bose ◽  
Tania Chakraborty ◽  
Souvik Roy

Background: Diabetic nephropathy (DN), a microvascular complication of diabetes has been a significant health issue globally. However, theaflavin enriched black tea extract (BTE-TF) could restrain DN. Objective: The main objective of this exploration was to elucidate the effect of BTE-TF on DN, though the underlying mechanism remains unclear and requires further investigation. Method: The tea leaves were fermented to get black tea extract. Total phenolic content and HPLC were carried out to determine the phenolic content and theaflavin in the extract. Streptozotocin induced diabetic rats were treated with 100, 200, and 400 mg/kg/day BTE-TF extract for 12 weeks. Biochemical parameters like blood glucose, creatinine, blood urea nitrogen (BUN), triglyceride and antioxidant parameters of kidney tissue were measured. Histology, immunohistochemistry and TUNEL assay were performed to observe the effect of the extract with comparison to the standard drug (Metformin 200mg/kg/day). Result: Treated animals exhibited reduced blood glucose levels, blood urea nitrogen (BUN), creatinine, and serum triglycerides. Further, BTE-TF restored the histological alterations in the kidney. Chronic hyperglycaemia resulted in a significant increase in oxidative stress and pro-inflammatory cytokines of NF-kβ pathway. BTE-TF attenuated oxidative stress (p<0.01), inflammation (p<0.05) and apoptosis (p<0.05). Conclusion: This study suggests that BTE-TF exerts a protective role against diabetes-induced renal injury by ameliorating oxidative stress, inflammation, and apoptosis.


2021 ◽  
Author(s):  
Jingda Li ◽  
Tianqi Wang ◽  
Panpan Liu ◽  
Fuyuan Yang ◽  
Xudong Wang ◽  
...  

Hesperetin as a major bioflavonoid in citrus fruits improves NAFLD by suppressing hepatic oxidative stress and inflammation.


Sign in / Sign up

Export Citation Format

Share Document