Comparative effects of incretin-based therapy on early-onset diabetic nephropathy in rats: Role of TNF-α, TGF-β and c-caspase-3

Life Sciences ◽  
2021 ◽  
pp. 119624
Author(s):  
Heba A. Habib ◽  
Gehan H. Heeba ◽  
Mohamed M.A. Khalifa
Life Sciences ◽  
2020 ◽  
Vol 254 ◽  
pp. 117760 ◽  
Author(s):  
Fares E.M. Ali ◽  
Emad H.M. Hassanein ◽  
Adel G. Bakr ◽  
Ehab A.M. El-Shoura ◽  
Dalia A. El-Gamal ◽  
...  

2021 ◽  
pp. 074823372110394
Author(s):  
Yujing Zhang ◽  
Shuai Huang ◽  
Shiyi Tan ◽  
Mingke Chen ◽  
Shang Yang ◽  
...  

Occupational exposure to silica dust is related to pulmonary inflammation and silicosis. Lipopolysaccharides (LPSs) could aggravate apoptosis in alveolar macrophages (AMs) of human silicosis through autophagy, yet how the reduction of autophagy attenuated LPS-induced lung injury and the related mechanisms need to be investigated. In the study, we aim to understand the role of 3-methyladenine (3-MA), an inhibitor of autophagy, in LPS-mediated inflammatory responses and fibrosis. We collected AMs from observers/silicosis patients. The results showed that LPS induced NF-κB-related pulmonary inflammation in observers and silicosis patients, as confirmed by an increase in the expression of IL-1β, IL-6, TNF-α, and p65, which could be inhibited by 3-MA treatment. In mice models, at the early stage (7d) of silicosis, but not the late (28d) stage, blocking autophagy reversed the increased levels of IL-1β, IL-6, TNF-α, and p65 caused by LPS. Mechanism study revealed that LPS triggered the expression of LC3 II, p62, and cleaved caspase-3 at the early stage exposed to silica, which could be restored by 3-MA, while there was no difference in the expression of LAMP1 either at the early or late stage of silicosis in different groups. Similarly, 3-MA treatment did not prevent fibrosis characterized by destroyed alveoli, collagen deposition, and increased expression of α-SMA and Col-1 induced by LPS at the late stage of silicosis. The results suggested that 3-MA has a role in the protection of lung injury at the early stage of silicosis and provided an experimental basis for preventive strategies of pulmonary inflammation and silicosis.


Biomolecules ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 703 ◽  
Author(s):  
Ahlam Alhusaini ◽  
Laila Fadda ◽  
Iman H. Hasan ◽  
Enas Zakaria ◽  
Abeer M. Alenazi ◽  
...  

Lead (Pb) is a toxic heavy metal pollutant with adverse effects on the liver and other body organs. Curcumin (CUR) is the principal curcuminoid of turmeric and possesses strong antioxidant and anti-inflammatory activities. This study explored the protective effect of CUR on Pb hepatotoxicity with an emphasis on oxidative stress, inflammation and Akt/GSK-3β signaling. Rats received lead acetate and CUR and/or ascorbic acid (AA) for seven days and samples were collected for analyses. Pb(II) induced liver injury manifested by elevated serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH), as well as histopathological alterations, including massive hepatocyte degeneration and increased collagen deposition. Lipid peroxidation, nitric oxide, TNF-α and DNA fragmentation were increased, whereas antioxidant defenses were diminished in the liver of Pb(II)-intoxicated rats. Pb(II) increased hepatic NF-κB and JNK phosphorylation and caspase-3 cleavage, whereas Akt and GSK-3β phosphorylation was decreased. CUR and/or AA ameliorated liver function, prevented tissue injury, and suppressed oxidative stress, DNA damage, NF-κB, JNK and caspase-3. In addition, CUR and/or AA activated Akt and inhibited GSK-3β in Pb(II)-induced rats. In conclusion, CUR prevents Pb(II) hepatotoxicity via attenuation of oxidative injury and inflammation, activation of Akt and inhibition of GSK-3β. However, further studies scrutinizing the exact role of Akt/GSK-3β signaling are recommended.


Author(s):  
SAPTARSHI PANIGRAHI ◽  
SOMNATH SURAI ◽  
HAO HONG

Objective: The experiment aimed to find out the effectiveness of Zileuton, a 5-LOX inhibitor on depressive behavior and neuroinflammation in vivo. Method: Male ICR mice (25-30g) randomly distributed Veh+Veh, CRS+Vehicle, CRS+ZIL50, and CRS+ZIL100. Zileuton was orally given in the treatment groups for 21 days after 3 weeks of stress induce CRS model. Starting from the day 1, in CRS model, mice were immobilized 8 hr/day for consecutive 21 days to induce stress. After completing the drug administration, subjected the mice for behavioral tests, and then performed histopathological & Western Blotting. Result: Stress induces CRS model guide to the significant depressive-like behavior of the mice in behavioral tests which was united by adverse changes at the cellular/molecular level responsible for regulation of inflammatory and apoptotic processes. CRS triggered Microglial over activation in the DG of the hippocampus, which was successfully inhibited by Zileuton post-treatment at the dose of 100mg/kg than 50mg/kg. Level of TNF-α, IL- 1β, nuclear NF-κB p65, Bax, and cleaved Caspase-3 was high and Bcl-2 expression was low in the stress induce CRS -treated mice which were found to be opposite in the Zileuton (100mg/kg). However, the dose of 50mg/kg less to mimic the effects as exhibited more by the 100mg/kg dose of Zileuton. Conclusion: It can be concluded that selective 5-lipoxygenase inhibitor Zileuton can efficiently inhibit the depressive-like behavior/activity in CRS-induced depressive mouse model. The study is the first to show the role of 5-lipoxygenase enzyme in and Chronic Restraint Stress (CRS)-induced mice models of stress, anxiety or depression.


2017 ◽  
Vol 43 (2) ◽  
pp. 644-659 ◽  
Author(s):  
Azza H. Abd Elwahab ◽  
Basma K. Ramadan ◽  
Mona F. Schaalan  ◽  
Amina M. Tolba

Background: Non-alcoholic fatty liver disease (NAFLD) is one of the alarmingly rising clinical problems in the 21st century with no effective drug treatment until now. Taurine is an essential amino acid in humans that proved efficacy as a non-pharmacological therapy in a plethora of diseases; however, its impact on NAFLD remains elusive. The aim of the current study is to evaluate the protective mechanism of taurine in experimental steatohepatitis induced by junk food given as cafeteria-diet (CAF-D) in male albino rats. Methods: Forty adult male albino rats of local strain between 8-10 weeks old, weighing 150 ± 20 g, were divided into four equal groups: Group I (control group), Group II (Taurine group), Group III (CAF-D for 12 weeks) and Group IV (CAF-D +Taurine). CAF-D was given in addition to the standard chow for 12 weeks, where each rat was given one piece of beef burger fried in 15 g of sunflower oil, one teaspoonful of mayonnaise, and one piece of petit pan bread, weighing 60g/ piece. In the serum, liver function tests; ALT, AST, ALP, GGT and the lipid profile; TG, TC, HDL-C added to reduced glutathione (GSH) were assessed colorimetrically, while fibroblast growth factor (FGF)-21, adiponectin & interleukin (IL)-6 via ELISA. The same technique was used for the assays of the hepatic levels of FGF-21, silent information regulator (SIRT1), malondialdehyde (MDA),IL-10, tumor necrosis factor-α (TNF-α) as well as the apoptotic markers; caspase-3 and B-cell lymphoma (Bcl-2). Results: The cafeteria-diet induced steatohepatitis was reflected by significantly increased body and liver weight gain, elevation of liver enzymes; ALT, AST, ALP and GGT added to the dyslipidemic panel, presented as increased TC, TG, LDL-C and decreased HDL-C levels. The steatosis-induced inflammatory milieu, marked by elevated serum levels of FGF-21, IL-6, hepatic TNF-α, as well as reduced IL-10 and adiponectin, was associated with steatosis- induced hepatic oxidative stress, reflected by increased hepatic MDA and decreased GSH levels, along with stimulated caspase-3 and decline in BcL-2 hepatic levels. These pathological disturbances were significantly ameliorated by taurine supplementation and evidenced histopathologically. The cross talk between hepatic FGF-21 and SIRT1 and their association to the induced perturbations are novel findings in this study. Taurine's efficacy in restoration of hepatic structure and function is partially via the increase in SIRT1 and associated reduction of FGF-21. Conclusion: The findings of the current study prove the protective role of taurine in NAFLD via a novel role in the amelioration of FGF-21/ SIRT1 axis, which could be considered a new therapeutic target.


2001 ◽  
Vol 280 (4) ◽  
pp. G572-G583 ◽  
Author(s):  
Q. Chang ◽  
B. L. Tepperman

Tumor necrosis factor (TNF)-α can induce cytotoxicity and apoptosis in a number of cell types and has been implicated in the regulation of many inflammatory processes. It has been suggested that protein kinase C (PKC) is one of the intracellular mediators of the actions of TNF-α. In the present study, the role of PKC isoforms in TNF-α-mediated cytotoxicity and apoptosis in intestinal cells was investigated using the rat epithelial cell line, IEC-18. Cells were incubated with TNF-α in the presence or absence of the transcription inhibitor actinomycin D (AMD). The extent of cell damage was enhanced when AMD was added to incubation medium, suggesting that new protein synthesis plays a role in the cytotoxic action of TNF. TNF-α also induced the translocation of PKC-α, -δ, and -ε from cytosol to the membrane fraction of the intestinal cells. Furthermore, the cytotoxic and apoptotic effects of TNF were reduced by pretreating the cells with the PKC-ε translocation inhibitor, PKC-εV1–2. In contrast, although cells incubated with the phorbol ester phorbol 12-myristate 13-acetate (PMA) also displayed an increase in cell injury, the extent of cytotoxicity and apoptosis was not enhanced by AMD. Furthermore, PMA-induced cell damage was reduced by rottlerin, a PKC-δ inhibitor. Caspase-3, an enzyme implicated in the mediation of apoptosis, was activated in cells in response to either TNF-α or PMA stimulation, and its effects on this activity were reduced by selective inhibition of PKC-ε and -δ, respectively. Furthermore, inhibition of caspase-3 activity reduced apoptosis. These data suggest that activation of selective PKC isoforms mediate the effects of TNF-α on intestinal epithelial cell injury.


PLoS ONE ◽  
2011 ◽  
Vol 6 (1) ◽  
pp. e16100 ◽  
Author(s):  
Susana Álvarez ◽  
Almudena Blanco ◽  
Manuel Fresno ◽  
Ma Ángeles Muñoz-Fernández
Keyword(s):  

2012 ◽  
Vol 302 (10) ◽  
pp. G1133-G1142 ◽  
Author(s):  
Masashi Yasuda ◽  
Shinichi Kato ◽  
Naoki Yamanaka ◽  
Maho Iimori ◽  
Daichi Utsumi ◽  
...  

Although NADPH oxidase 1 (NOX1) has been shown to be highly expressed in the gastrointestinal tract, the physiological and pathophysiological roles of this enzyme are not yet fully understood. In the present study, we investigated the role of NOX1 in the pathogenesis of intestinal mucositis induced by the cancer chemotherapeutic agent 5-fluorouracil (5-FU) in mice. Intestinal mucositis was induced in Nox1 knockout (Nox1KO) and littermate wild-type (WT) mice via single, daily administration of 5-FU for 5 days. In WT mice, 5-FU caused severe intestinal mucositis characterized by a shortening of villus height, a disruption of crypts, a loss of body weight, and diarrhea. In Nox1KO mice, however, the severity of mucositis was significantly reduced, particularly with respect to crypt disruption. The numbers of apoptotic caspase-3- and caspase-8-activated cells in the intestinal crypt increased 24 h after the first 5-FU administration but were overall significantly lower in Nox1KO than in WT mice. Furthermore, the 5-FU-mediated upregulation of TNF-α, IL-1β, and NOX1 and the production of reactive oxygen species were significantly attenuated in Nox1KO mice compared with that in WT mice. These findings suggest that NOX1 plays an important role in the pathogenesis of 5-FU-induced intestinal mucositis. NOX1-derived ROS production following administration of 5-FU may promote the apoptotic response through upregulation of inflammatory cytokines.


2018 ◽  
Vol 46 (1) ◽  
pp. 105-118 ◽  
Author(s):  
Tao Ma ◽  
Amit D. Kandhare ◽  
Anwesha A. Mukherjee-Kandhare ◽  
Subhash L. Bodhankar
Keyword(s):  

2014 ◽  
Vol 306 (11) ◽  
pp. F1335-F1347 ◽  
Author(s):  
Keisuke Omote ◽  
Tomohito Gohda ◽  
Maki Murakoshi ◽  
Yu Sasaki ◽  
Saiko Kazuno ◽  
...  

Chronic inflammation promotes the progression of diabetic nephropathy (DN). However, the role of TNF-α remains unclear. The objectives of the present study were to examine whether TNF-α inhibition with a soluble TNF receptor (TNFR)2 fusion protein, i.e., etanercept (ETN), improves the early stage of DN in the type 2 diabetic model of the KK-Ay mouse and to also investigate which TNF pathway, TNFR1 or TNFR2, is predominantly involved in the progression of this disease. ETN was injected intraperitoneally into mice for 8 wk. Renal damage was evaluated by immunohistochemistry, Western blot analysis, and/or real-time PCR. In vitro, mouse tubular proximal cells were stimulated by TNF-α and/or high glucose (HG) and treated with ETN. ETN dramatically improved not only albuminuria but also glycemic control. Renal mRNA and/or protein levels of TNFR2, but not TNF-α and TNFR1, in ETN-treated KK-Ay mice were significantly decreased compared with untreated KK-Ay mice. mRNA levels of ICAM-1, VCAM-1, and monocyte chemoattractant protein-1 and the number of F4/80-positive cells were all decreased after treatment. Numbers of cleaved caspase-3- and TUNEL-positive cells in untreated mice were very few and were not different from ETN-treated mice. In vitro, stimulation with TNF-α or HG markedly increased both mRNA levels of TNFRs, unlike in the in vivo case. Furthermore, ETN partly recovered TNF-α-induced but not HG-induced TNFR mRNA levels. In conclusion, it appears that ETN may improve the progression of the early stage of DN predominantly through inhibition of the anti-inflammatory action of the TNF-α-TNFR2 pathway.


Sign in / Sign up

Export Citation Format

Share Document