scholarly journals Increasing nutrient inputs over the last 500 years in an Italian low-impacted seagrass meadow

2022 ◽  
Vol 174 ◽  
pp. 113298
Author(s):  
Nicolò Casella ◽  
Giulio Careddu ◽  
Edoardo Calizza ◽  
Simona Sporta Caputi ◽  
Loreto Rossi ◽  
...  
1997 ◽  
Vol 32 (4) ◽  
pp. 733-750
Author(s):  
R. Mark Palmer

Abstract Sewage treatment studies at the watershed scale, compared to case-by-case community projects, ensures the most cost-efficient investment of funds commensurate with environmental requirements to sustain growth. A three-year environmental assessment study for the town of New Tecumseth, Ontario, examined all nutrient inputs to the Nottawasaga River watershed. Other challenging watershed constraints were investigated, such as stream and river flow takings for irrigation and sediment transport, prior to the selection of the master sewage treatment plan. The findings from the field research and computer modelling were used to (1) place a realistic perspective on nutrient impacts, present and future, attributable to treated sewage effluent; (2) design a master plan that could be used as an opportunity in terms of reusing the effluent locally for agricultural irrigation; (3) provide a real-time assurance of the plan’s performance/compliance, based on the actual carrying capacity of the aquatic ecosystem; (4) stage the construction of the plan in a cost-effective and environmentally sound manner; and (5) recommend a water resources management strategy to control other nutrient and sediment load sources within the watershed. The recommended master sewage treatment plan and water resources management strategy can restore the Ministry of Environment and Energy provincial water quality objective concentration for total phosphorus within the river during 7Q20 flow conditions.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 624
Author(s):  
Yan Shan ◽  
Mingbin Huang ◽  
Paul Harris ◽  
Lianhai Wu

A sensitivity analysis is critical for determining the relative importance of model parameters to their influence on the simulated outputs from a process-based model. In this study, a sensitivity analysis for the SPACSYS model, first published in Ecological Modelling (Wu, et al., 2007), was conducted with respect to changes in 61 input parameters and their influence on 27 output variables. Parameter sensitivity was conducted in a ‘one at a time’ manner and objectively assessed through a single statistical diagnostic (normalized root mean square deviation) which ranked parameters according to their influence of each output variable in turn. A winter wheat field experiment provided the case study data. Two sets of weather elements to represent different climatic conditions and four different soil types were specified, where results indicated little influence on these specifications for the identification of the most sensitive parameters. Soil conditions and management were found to affect the ranking of parameter sensitivities more strongly than weather conditions for the selected outputs. Parameters related to drainage were strongly influential for simulations of soil water dynamics, yield and biomass of wheat, runoff, and leaching from soil during individual and consecutive growing years. Wheat yield and biomass simulations were sensitive to the ‘ammonium immobilised fraction’ parameter that related to soil mineralization and immobilisation. Simulations of CO2 release from the soil and soil nutrient pool changes were most sensitive to external nutrient inputs and the process of denitrification, mineralization, and decomposition. This study provides important evidence of which SPACSYS parameters require the most care in their specification. Moving forward, this evidence can help direct efficient sampling and lab analyses for increased accuracy of such parameters. Results provide a useful reference for model users on which parameters are most influential for different simulation goals, which in turn provides better informed decision making for farmers and government policy alike.


2021 ◽  
Vol 9 (2) ◽  
pp. 317
Author(s):  
Dolors Vaqué ◽  
Julia A. Boras ◽  
Jesús Maria Arrieta ◽  
Susana Agustí ◽  
Carlos M. Duarte ◽  
...  

The ocean surface microlayer (SML), with physicochemical characteristics different from those of subsurface waters (SSW), results in dense and active viral and microbial communities that may favor virus–host interactions. Conversely, wind speed and/or UV radiation could adversely affect virus infection. Furthermore, in polar regions, organic and inorganic nutrient inputs from melting ice may increase microbial activity in the SML. Since the role of viruses in the microbial food web of the SML is poorly understood in polar oceans, we aimed to study the impact of viruses on prokaryotic communities in the SML and in the SSW in Arctic and Antarctic waters. We hypothesized that a higher viral activity in the SML than in the SSW in both polar systems would be observed. We measured viral and prokaryote abundances, virus-mediated mortality on prokaryotes, heterotrophic and phototrophic nanoflagellate abundance, and environmental factors. In both polar zones, we found small differences in environmental factors between the SML and the SSW. In contrast, despite the adverse effect of wind, viral and prokaryote abundances and virus-mediated mortality on prokaryotes were higher in the SML than in the SSW. As a consequence, the higher carbon flux released by lysed cells in the SML than in the SSW would increase the pool of dissolved organic carbon (DOC) and be rapidly used by other prokaryotes to grow (the viral shunt). Thus, our results suggest that viral activity greatly contributes to the functioning of the microbial food web in the SML, which could influence the biogeochemical cycles of the water column.


Life ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 413
Author(s):  
Kevin Piato ◽  
Cristian Subía ◽  
Jimmy Pico ◽  
Darío Calderón ◽  
Lindsey Norgrove ◽  
...  

Coffee agroforestry systems could reconcile agricultural and environmental objectives. While pests and diseases can reduce yield, their interactions with shade and nutrition have been rarely researched, and are particularly lacking in perennial systems. We hypothesized that intermediate shade levels could reduce coffee pests while excess shade could favor fungal diseases. We hypothesized that organic rather than mineral fertilization would better synchronize with nutrient uptake and higher nutrient inputs would be associated with reduced pest and disease damage due to higher plant vigor, yet effects would be less obvious in shaded plots as coffee growth would be light-limited. Using three-year-old trees of Coffea canephora var. Robusta (robusta coffee) in the Ecuadorian Amazon, we compared a full-sun system with four shading methods creating different shade levels: (1) Myroxylon balsamum; (2) Inga edulis; (3) Erythrina spp.; or, (4) Erythrina spp. plus Myroxylon balsamum. Conventional farming at either (1) moderate or (2) intensified input and organic farming at (3) low or (4) intensified input were compared in a split-plot design with shade as the main plot factor and farming practice as the sub-plot factor. The infestation of the following pests and disease incidences were evaluated monthly during the dry season: brown twig beetle (Xylosandrus morigerus), coffee leaf miner (Leucoptera coffeella), coffee berry borer (Hypothenemus hampei), anthracnose disease (Colletotrichum spp.), thread blight (Pellicularia koleroga), and cercospora leaf spot (Cercospora coffeicola). Coffee berry borer and brown twig beetle infestation were both reduced by 7% in intensified organic treatments compared to intensified conventional treatments. Colonization of coffee berry borer holes in coffee berries by the entomopathogenic fungus Beauveria bassiana was also assessed. Brown twig beetle infestation was significantly higher under full sun than under Inga edulis, yet no other shade effects were detected. We demonstrate for the first time how intensified input use might promote pest populations and thus ultimately lead to robusta coffee yield losses.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1145
Author(s):  
Zhongyuan Chen ◽  
Hao Xu ◽  
Yanna Wang

This study reviews the monsoonal Yangtze and the arid Nile deltas with the objective of understanding how the process–response between river-basin modifications and delta-estuary ecological degradation are interrelated under contrasting hydroclimate dynamics. Our analysis shows that the Yangtze River had a long-term stepwise reduction in sediment and silicate fluxes to estuary due to dam construction since the 1960s, especially after the Three Gorges Dam (TGD) closed in 2003. By contrast, the Nile had a drastic reduction of sediment, freshwater, and silicate fluxes immediately after the construction of the Aswan High Dam (AHD) in 1964. Seasonal rainfall in the mid-lower Yangtze basin (below TGD) complemented riverine materials to its estuary, but little was available to the Nile coast below the AHD in the hyper-arid climate setting. Nitrogen (N) and phosphate (P) fluxes in both river basins have increased because of the overuse of N- and P-fertilizer, land-use changes, urbanization, and industrialization. Nutrient ratios (N:P:Si) in both delta-estuaries was greatly altered, i.e., Yangtze case: 75:1:946 (1960s–1970s), 86:1:272 (1980s–1990s) and 102:1:75 (2000s–2010s); and Nile case: 6:1:32 (1960s–1970s), 8:1:9 (1980s–1990s), and 45:1:22 (2013), in the context of the optimum of Redfield ratio (N:P:Si = 16:1:16). This led to an ecological regime shift evidenced by a long-term change in phytoplankton communities in the Yangtze estuary, where silicious algae tended to lose dominance since the end of the 1990s, when more toxic dinoflagellates began to emerge. In the Nile estuary, such a regime shift was indicated by the post-dam dramatic reduction in zooplankton standing crop and fish landings until the early 2000s when biological recovery occurred due to nutrient inputs from anthropogenic sources. Although the Yangtze had higher human impacts than the Nile in terms of population, industrialization, and fertilizer application, N concentrations in the Nile estuarine waters surpassed the Yangtze in recent decades. However, eutrophication in the Yangtze estuary is much more intensive than in the Nile, leading to the likelihood of its estuarine water becoming more acidic than ever before. Therefore, ecological degradation in both delta-estuaries does not follow a linear trajectory, due not only to different climate dynamics but also to human forcings. The comparative insights of this study should be incorporated into future integrated coastal management of these two important systems.


2006 ◽  
Vol 63 (1) ◽  
pp. 120-133 ◽  
Author(s):  
Tamao Kasahara ◽  
Alan R Hill

Stream restoration projects that aim to rehabilitate ecosystem health have not considered surface–subsurface linkages, although stream water and groundwater interaction has an important role in sustaining stream ecosystem functions. The present study examined the effect of constructed riffles and a step on hyporheic exchange flow and chemistry in restored reaches of several N-rich agricultural and urban streams in southern Ontario. Hydrometric data collected from a network of piezometers and conservative tracer releases indicated that the constructed riffles and steps were effective in inducing hyporheic exchange. However, despite the use of cobbles and boulders in the riffle construction, high stream dissolved oxygen (DO) concentrations were depleted rapidly with depth into the hyporheic zones. Differences between observed and predicted nitrate concentrations based on conservative ion concentration patterns indicated that these hyporheic zones were also nitrate sinks. Zones of low hydraulic conductivity and the occurrence of interstitial fines in the restored cobble-boulder layers suggest that siltation and clogging of the streambed may reduce the downwelling of oxygen- and nitrate-rich stream water. Increases in streambed DO levels and enhancement of habitat for hyporheic fauna that result from riffle–step construction projects may only be temporary in streams that receive increased sediment and nutrient inputs from urban areas and croplands.


Heliyon ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. e07881
Author(s):  
M. Ndung'u ◽  
L.W. Ngatia ◽  
R.N. Onwonga ◽  
M.W. Mucheru-Muna ◽  
R. Fu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document