scholarly journals The basement membrane in the cross-roads between the lung and kidney

2021 ◽  
Author(s):  
Katharina Jandl ◽  
Ayse Ceren Mutgan ◽  
Kathrin Eller ◽  
Liliana Schaefer ◽  
Grazyna Kwapiszewska
2018 ◽  
Vol 198 (9) ◽  
pp. 1220-1222
Author(s):  
Mark L. Hepokoski ◽  
Amy L. Bellinghausen ◽  
Christine M. Bojanowski ◽  
Atul Malhotra
Keyword(s):  

Author(s):  
D. E. Philpott ◽  
A. Takahashi

Two month, eight month and two year old rats were treated with 10 or 20 mg/kg of E. Coli endotoxin I. P. The eight month old rats proved most resistant to the endotoxin. During fixation the aorta, carotid artery, basil arartery of the brain, coronary vessels of the heart, inner surfaces of the heart chambers, heart and skeletal muscle, lung, liver, kidney, spleen, brain, retina, trachae, intestine, salivary gland, adrenal gland and gingiva were treated with ruthenium red or alcian blue to preserve the mucopolysaccharide (MPS) coating. Five, 8 and 24 hrs of endotoxin treatment produced increasingly marked capillary damage, disappearance of the MPS coating, edema, destruction of endothelial cells and damage to the basement membrane in the liver, kidney and lung.


Author(s):  
V. Mizuhira ◽  
Y. Futaesaku

Previously we reported that tannic acid is a very effective fixative for proteins including polypeptides. Especially, in the cross section of microtubules, thirteen submits in A-tubule and eleven in B-tubule could be observed very clearly. An elastic fiber could be demonstrated very clearly, as an electron opaque, homogeneous fiber. However, tannic acid did not penetrate into the deep portion of the tissue-block. So we tried Catechin. This shows almost the same chemical natures as that of proteins, as tannic acid. Moreover, we thought that catechin should have two active-reaction sites, one is phenol,and the other is catechole. Catechole site should react with osmium, to make Os- black. Phenol-site should react with peroxidase existing perhydroxide.


Author(s):  
Jared Grantham ◽  
Larry Welling

In the course of urine formation in mammalian kidneys over 90% of the glomerular filtrate moves from the tubular lumen into the peritubular capillaries by both active and passive transport mechanisms. In all of the morphologically distinct segments of the renal tubule, e.g. proximal tubule, loop of Henle and distal nephron, the tubular absorbate passes through a basement membrane which rests against the basilar surface of the epithelial cells. The basement membrane is in a strategic location to affect the geometry of the tubules and to influence the movement of tubular absorbate into the renal interstitium. In the present studies we have determined directly some of the mechanical and permeability characteristics of tubular basement membranes.


Author(s):  
Robert H. Liss ◽  
Frances A. Cotton

Daunomycin, an antibiotic used in the clinical management of acute leukemia, produces a delayed, lethal cardiac toxicity. The lethality is dose and schedule dependent; histopathologic changes induced by the drug have been described in heart, lung, and kidney from hamsters in both single and multiple dose studies. Mice given a single intravenous dose of daunomycin (10 mg/kg) die 6-7 days later. Drug distribution studies indicate that the rodents excrete most of a single dose of the drug as daunomycin and metabolite within 48 hours after dosage (M. A. Asbell, personal communication).Myocardium from the ventricles of 6 moribund BDF1 mice which had received a single intravenous dose of daunomycin (10 mg/kg), and from controls dosed with physiologic saline, was fixed in glutaraldehyde and prepared for electron microscopy.


Author(s):  
Douglas R. Keene ◽  
Gregory P. Lunstrum ◽  
Patricia Rousselle ◽  
Robert E. Burgeson

A mouse monoclonal antibody produced from collagenase digests of human amnion was used by LM and TEM to study the distribution and ultrastructural features of an antigen present in epithelial tissues and in cultured human keratinocytes, and by immunoaffinity chromatography to partially purify the antigen from keratinocyte cell culture media.By immunofluorescence microscopy, the antigen displays a tissue distribution similar to type VII collagen; positive staining of the epithelial basement membrane is seen in skin, oral mucosa, trachea, esophagus, cornea, amnion and lung. Images from rotary shadowed preparations isolated by affinity chromatography demonstrate a population of rod-like molecules 107 nm in length, having pronounced globular domains at each end. Polyacrylamide gel electrophoresis suggests that the size of this molecule is approximately 440kDa, and that it is composed of three nonidentical chains disulfide bonded together.


Author(s):  
John H. L. Watson ◽  
C. N. Sun

That the etiology of Whipple's disease could be bacterial was first suggested from electron micrographs in 1960. Evidence for binary fission of the bacteria, their phagocytosis by histiocytes in the lamina propria, their occurrence between and within the cells of the epithelium and on the brush border of the lumen were reported later. Scanning electron microscopy has been applied by us in an attempt to confirm the earlier observations by the new technique and to describe the bacterium further. Both transmission and scanning electron microscopy have been used concurrently to study the same biopsy specimens, and transmission observations have been used to confirm those made by scanning.The locations of the brush borders, the columnar epithelial cells, the basement membrane and the lamina propria beneath it were each easily identified by scanning electron microscopy. The lamina propria was completely filled with the wiener-shaped bacteria, Fig. 1.


Author(s):  
R.P. Nayyar ◽  
C.F. Lange ◽  
J. L. Borke

Streptococcal cell membrane (SCM) antiserum injected mice show a significant thickening of glomerular basement membrane (GBM) and an increase in mesangial matrix within 4 to 24 hours of antiserum administration (1,2,3). This study was undertaken to evaluate the incorporation of 3H proline into glomerular cells and GBM under normal and anti-SCM induced conditions. Mice were administered, intraperitoneally, 0.1 ml of normal or anti-SCM serum followed by a 10 µC/g body weight injection of 3H proline. Details of the preparation of anti-SCM (Group A type 12 streptococcal pyogenes) and other sera and injection protocol have been described elsewhere (2). After 15 minutes of isotope injection a chase of cold proline was given and animal sacrificed at 20 minutes, 1,2,4,8,24 and 48 hours. One of the removed kidneys was processed for immunofluorescence, light and electron microscopic radioautographic studies; second kidney was used for GBM isolation and aminoacid analysis.


Author(s):  
T. M. Murad ◽  
E. von Haam

Pericytes are vascular satellites present around capillary blood vessels and small venules. They have been observed in almost every tissue of the body and are thought to be related to vascular smooth muscle cells. Morphologically pericytes have great similarity to vascular endothelial cells and also slightly resemble myoepithelial cells.The present study describes the ultrastructural morphology of pericytes in normal breast tissue and in benign tumor of the breast. The study showed that pericytes are ovoid or elongated cells separated from the endothelial cell of the capillary blood vessel by the basement membrane of endothelial cell. The nuclei of pericytes are often very distinctive. Although some are round, oval, or elongated, others show marked irregularity and infolding of the nuclear membrane. The cytoplasm shows mono-or bipolar extension in which the cytoplasmic organelles are located (Fig. 1). These cytoplasmic extensions embrace the capillary blood vessel incompletely. The plasma membrane exhibits multiple areas of focal condensation called hemidesmosomes (Fig. 2, arrow). A variable number of pinocytotic vesicles are frequently seen lining the outer plasma membrane. Normally pericytes are surrounded by a basement membrane which is found more consistently on the outer plasma membrane separating the pericytes from the stromal connective tissue.


Author(s):  
J. A. Nowell ◽  
J. Pangborn ◽  
W. S. Tyler

Leonardo da Vinci in the 16th century, used injection replica techniques to study internal surfaces of the cerebral ventricles. Developments in replicating media have made it possible for modern morphologists to examine injection replicas of lung and kidney with the scanning electron microscope (SEM). Deeply concave surfaces and interrelationships to tubular structures are difficult to examine with the SEM. Injection replicas convert concavities to convexities and tubes to rods, overcoming these difficulties.Batson's plastic was injected into the renal artery of a horse kidney. Latex was injected into the pulmonary artery and cementex in the trachea of a cat. Following polymerization the tissues were removed by digestion in concentrated HCl. Slices of dog kidney were aldehyde fixed by immersion. Rat lung was aldehyde fixed by perfusion via the trachea at 30 cm H2O. Pieces of tissue 10 x 10 x 2 mm were critical point dried using CO2. Selected areas of replicas and tissues were coated with silver and gold and examined with the SEM.


Sign in / Sign up

Export Citation Format

Share Document