Precipitation behavior and mechanical properties of Al-Zn-Mg-Cu matrix nanocomposites: Effects of SiC nanoparticles addition and heat treatment

2021 ◽  
Vol 172 ◽  
pp. 110827
Author(s):  
Jingjing Li ◽  
Jiang Ju ◽  
Zhen Zhang ◽  
Yang Zhou ◽  
Yifei Luo ◽  
...  
2015 ◽  
Vol 787 ◽  
pp. 558-562
Author(s):  
L. Poovazhagan ◽  
K. Kalaichelvan ◽  
V.R. Balaji ◽  
P. Haripriya ◽  
S.C. Amith

In this work, AA6061/1.25 vol. % SiCp metal matrix nanocomposites (MMNCs) were fabricated using the ultrasonic cavitation assisted casting process. To investigate the effect of ultrasonic amplitudes on processing the MMNCs, the MMNC samples were processed with 15 µm, 30 µm and 50 µm of ultrasonic amplitudes. The results indicate that the ultrasonic amplitudes play a significant role in dispersing the SiC nanoparticles uniformly in the AA6061 melt and it also affecting the mechanical properties of the fabricated MMNCs. The AA6061/1.25 vol. % SiCp MMNC sample processed with 30 µm of ultrasonic amplitude possessed the good dispersion of SiCp in the Al melt and hence better mechanical properties compared to the MMNCs processed with 15 µm and 50 µm amplitudes.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1576
Author(s):  
Jun-Seok Oh ◽  
Young-Gy Song ◽  
Baig-Gyu Choi ◽  
Chalothorn Bhamornsut ◽  
Rujeeporn Nakkuntod ◽  
...  

High Cr white irons with various fractions of primary dendrite have been prepared through the modification of their chemical composition. Increasing C and Cr contents decreased the primary dendrite fraction. Eutectic solidification occurred with the phase fraction ratio of austenite: M7C3 = 2.76:1. The measured primary dendrite fractions were similar to the calculated results. ThermoCalc calculation successfully predicted fractions of M7C3, austenite, and M23C6. Conventional heat treatment at high temperature caused a destabilization of austenite, releasing it’s solute elements to form M23C6 carbide. Precipitation of M23C6 during destabilization preferentially occurred within primary (austenite) dendrite, however, the precipitation scarcely occurred within austenite in eutectic phase. Thus, M23C6 precipitation by destabilization was relatively easy in alloys with a high fraction of primary dendrite.


2020 ◽  
Vol 55 (14) ◽  
pp. 6145-6160 ◽  
Author(s):  
Bowen Pu ◽  
Xiaobin Lin ◽  
Bowen Li ◽  
Xiaofeng Chen ◽  
Chunnian He ◽  
...  

2009 ◽  
Vol 618-619 ◽  
pp. 449-452 ◽  
Author(s):  
Shi Ying Liu ◽  
Fei Peng Gao ◽  
Qiong Yuan Zhang ◽  
Wen Zhen Li

A high intensity ultrasonic assisted casting method was used to fabricate SiC nanoparticles reinforced magnesium matrix nanocomposites (n-SiCp/AZ91D). The microstructures and mechanical properties of the nanocomposites were investigated. The results show that n-SiCp are well dispersed in the matrix and the grain size was refined. A HRTEM study of the interface between n-SiCp and the matrix suggests that SiC bonds well with matrix without forming an intermediate phase. With the lower addition of n-SiCp, the mechanical properties of nanocomposites are greatly improved. As compared to an unreinforced magnesium alloy matrix, the tensile and yield strength were improved by 43.6% and 117% respectively.


2010 ◽  
Vol 89-91 ◽  
pp. 290-294 ◽  
Author(s):  
Sun Mi Kim ◽  
Kwang Tae Kim ◽  
Yong Deuk Lee ◽  
Chong Soo Lee

A study was made to investigate the precipitation behavior of sigma phase via various heat treatments and corresponding mechanical properties of super duplex stainless steels. Isothermal heat treatment was performed at temperature range of 600~1000°C to draw TTT diagram for sigma phase. Tensile and Charpy impact tests were performed at room temperature and the results were analyzed in relation with the microstructure. The effect of lattice misfit strains due to the precipitation of sigma phase on the mechanical properties was also discussed.


2014 ◽  
Vol 616 ◽  
pp. 258-262 ◽  
Author(s):  
Kosuke Ueki ◽  
Kyosuke Ueda ◽  
Takayuki Narushima

The precipitation behavior during heat treatment and resulting mechanical properties of ASTM F 90 Co-20Cr-15W-10Ni (mass%) alloys were investigated with regards to their biomedical applications. Heat treatment was conducted at temperatures of 873 to 1623 K, for a holding time of 259.2 ks. The precipitates produced were then electrolytically extracted from the alloys and analyzed by X-ray diffraction (XRD). This revealed that the precipitates formed were an M23X6 type and/or η-phase (i.e., an M6X-M12X type). The M23X6-type precipitate was detected across the entire heat-treatment temperature range; however, the η-phase precipitate was only detected at 1073 to 1473 K, becoming dominant at 1173 to 1373 K. The formation of M23X6 type precipitates at 873 K is shown to improve the mechanical properties of this alloy, whereas the domination by the η-phase precipitate at higher temperatures causes deterioration in the ductility.


2020 ◽  
Vol 835 ◽  
pp. 243-250
Author(s):  
Ahmed Hamed ◽  
Mamdouh Eissa ◽  
Abdelhakim Kandil ◽  
Omnia Ali ◽  
Taha Mattar

Normalizing is an effective heat treatment in improving the microstructure and developing the mechanical properties of micro-alloyed steel. The normalizing parameters such as temperature and holding time are the main keys to microstructure and mechanical properties controlling. Therefore, obtaining an optimum combination of mechanical properties must be subjected to an ideal combination of these parameters. Furthermore, adjusting the optimum normalizing parameters must be considered for every chemical composition depending on the critical transformation temperatures. In this work, four micro-alloyed steel alloys containing V (0.008-0.1wt %) and Ti (0.002-0.072) were held on different normalizing temperatures for 30 minutes. The first holding temperature was carried out just above the Ac3 temperature and the second was carried out above the Ac3 by 100°C (Ac3+100°C). With the controlled normalizing condition, V-Ti-micro-alloyed steel alloy has produced an ultra-fine structure of grain size 2.2 microns and combined high strength of 725 MPa YS, 1058 MPa UTS and good ductility of 20%.


Author(s):  
M. A. McCoy

Transformation toughening by ZrO2 inclusions in various ceramic matrices has led to improved mechanical properties in these materials. Although the processing of these materials usually involves standard ceramic powder processing techniques, an alternate method of producing ZrO2 particles involves the devtrification of a ZrO2-containing glass. In this study the effects of glass composition (ZrO2 concentration) and heat treatment on the morphology of the crystallization products in a MgO•Al2•SiO2•ZrO2 glass was investigated.


Sign in / Sign up

Export Citation Format

Share Document