Effect of Chopped Sisal fiber (CSF) on enhancing the compressive strength of Local Plaster of Paris (LPOP)

Author(s):  
Ahmed S.D. AL-Ridha ◽  
Ali A. Abbood ◽  
Farah M. Hussein ◽  
Layth Sahib Dheyab ◽  
Eng. Lubna Najim Abdullah ◽  
...  
2012 ◽  
Vol 501 ◽  
pp. 34-38 ◽  
Author(s):  
Kar Keng Lim ◽  
Roslinda Shamsudin ◽  
Muhammad Azmi Abdul Hamid

In this study, paper sludge ash, a waste from pulp and paper industry was used as a filler in fabricating Plaster of Paris/paper sludge ash composites. Various percentage of paper sludge ash was used, namely 1wt.%, 3wt.%, 5wt.% and 7wt.%. The effect of paper sludge ash on the compressive strength of the Plaster of Paris was studied. The mixed powder of paper sludge ash and Plaster of Paris were form into a 6 mm diameter and 12 mm height cylindrical samples. The composites were characterized theirs density where it shows that the density decreased as the amount of paper sludge ash increased. The compressive strength of the composites also decreased from 11.67 MPa without paper sludge ash addition to 0.50 MPa at 7wt.% paper sludge ash. However, the requirement of strength for Plaster of Paris in industry is between 8.96 MPa to 20.68 MPa. From the SEM observation, sample contain higher percentage of paper sludge ash exhibited more porosity. Therefore with the addition of 1wt.% of paper sludge ash into Plaster of Paris can be a promising construction material.


2011 ◽  
Vol 243-249 ◽  
pp. 494-498
Author(s):  
Hui Ming Bao

By means of the tests on the mechanics performance of the reinforcing concrete mixed with sisal fibers or rubber powder of certain content are investigated. The compressive strength, tensile strength and flexural strength, etc. are compared. The test indicates that when the test condition is same, the compressive strength, tensile strength and flexural strength of the sisal fibers concrete are better than those of the rubber powder’s. The sisal fiber concrete is environment friendly than the rubber powder concrete. And it has widely value of spread and utilization.


Author(s):  
Divesh Sharma

In this review article, the usage of bitumen, sisal fiber and the sisal fiber for improving the strength parameters of concrete is discussed in detail. Numerous research studies related to the usage of bitumen, sisal fiber and stone dust are studied in detail to determine the results and outcome out of it. Previous research works showed that all, these materials were enhancing the strength and durability aspects of the concrete and depending upon the research studies certain outcomes has been drawn which are as follows. The studies related to the usage of the bitumen or asphalt in concrete so as to produce bituminous concrete or asphaltic concrete, the previous research works conclude that the maximum strength was attained at 5 percent usage of the bitumen and after further usage the general compressive strength of the concrete starts declining. The previous studies related to the usage of the sisal fiber showed that with the usage of the sisal fiber in the concrete, the strength aspects of concrete were improving and the maximum strength was obtained at 1.5 percent usage of the sisal fiber and after his the strength starts declining. Further the studies related to the usage of the stone dust showed that with the usage of stone dust as partial replacement of the natural fine aggregate the compressive strength of the concrete was improving and it was conclude that with the increase in the percentage of the stone dust, the compressive strength of the concrete was increasing.


2018 ◽  
Vol 7 (4.20) ◽  
pp. 205 ◽  
Author(s):  
Aqil M. ALmusawi ◽  
Thulfiqar S. Hussein ◽  
Muhaned A. Shallal

Recent developments in the production of ecologically friendly building composites have led to a renewed interest in the use of vegetable fibers as a reinforcement element. Traditional pure Plaster of Paris (POP) can suffer from the development of micro-cracks due to thermal expansion. Therefore, sisal fiber was studied for its potential as an ecological element to restrict and delay the development of micro-cracks in POP. Different sisal proportions of 0, 2, 4, 6, 8 and 10 wt. % of POP were used to characterize the physical and mechanical properties of POP at the ambient temperature. Then, the effects of temperatures of 25, 100, 200, 300, 400 and 500  were investigated. Results proved that the composite of 10% sisal fiber had the best mechanical properties. Also, when the fiber content was increased, the composite’s performance was enhanced, becoming better able to resist elevated temperatures. However, raising the temperature to 300 or above had a negative effect on the mechanical properties, which were significantly decreased due to the degradation of the sisal fiber. 


In this paper various mix proportions of Reactive Powder Concretes were formulated using ordinary Portland cement, Fly ash, Micro silica, Silica Fume, Quartz powder etc and these concretes were subjected to strength test. The best mix was selected for further in depth study with fibers like Sisal fiber, Coir fiber, Hair fiber and Polypropylene fiber mixed Reactive Powder Concrete and the various tests have been performed Cube Compressive strength, Cylinder Compressive strength, Flexural strength, Split Tensile strength, Shear test, Water absorption, Sorptivity and Chloride diffusion etc. As a result, fiber incorporated concrete shows increasing Flexural strength, splitting tensile strength, and shear strength up to 30% as compared to control RPC and gives minimal decrease in compressive strength by the addition of fibers. These characteristics make it as a promising material for casting non structural elements such as pressure pipes, flooring tiles, Partition panels, door and window frames. It can also be used as repair materials.


2012 ◽  
Vol 2 (1) ◽  
Author(s):  
S. Sinarep ◽  
Agus Dwi Catur

Sandwich composite structure consisting of a core is flanked by two skin.  Therefore, the density of the composite sandwich are influenced by core composites material, the more light core the more lightweight composite produced. So also with the composite compressive strength is also very dependent on the core material. In this paper discussed the influence of core thickness on density and compressive strength of composite sandwich. Sisal fiber or  banana tree fibers that have been woven embedded in polyester composites to strengthen the skin. Composite core (Styrofoam) inserted between the two types of laminated composites to reduce weight and increase rigidity. The variation of the thickness of the core is applied in the manufacture of composites. Made of composite density was measured for specific gravity compared to wood or wood products on the market. Compressive strength of composite was characterized to determine the effect of core thickness on the compressive strength of composites.Research results show that the density of composite decreases with increasing thickness of  styrofoam core. Sandwich composite density is much smaller than the specific gravity of wood or wood products on the market.


This research study has experimentally performed on the compressive strength, split tensile flexural strength and durability test method also emphasized in various mixes of high-performance concrete. The maximum compressive strength of concrete was noted for different curing days, while the addition of fly ash 20% with 15% of slag along with1% of sisal fiber reinforced concrete than compared to Plain Portland cement content up to 100%. Further, increasing the cementitious binder content there is a drastic fall in strength gain was observed than that of other mixes. On the contrary, the best mix was identified that's 10% fly ash along with 15% of slag produced the highest compressive strength, split tensile strength and flexural strength for different days of cured the concrete specimens. Also, the durability test performed as prescribed in ATMC 1202, based on the lab test results, it is concluded that the electrical charge passed over all the concrete specimen at 28 and 56 days presents the lesser values 1000 (coulombs) this is the evidently proved that the high resistance towards the corrosions and drastically reduced the chloride ions permeability except for plain cement concrete.


2018 ◽  
Vol 875 ◽  
pp. 174-178
Author(s):  
Bhawat Chaichannawatik ◽  
Athasit Sirisonthi ◽  
Qudeer Hussain ◽  
Panuwat Joyklad

This study presents results of an experimental investigation conducted to investigate the mechanical properties of sisal and glass fiber reinforced concrete. Four basic concrete mixes were considered: 1) Plain concrete (PC) containing ordinary natural aggregates without any fibers, 2) sisal fiber reinforced concrete (SFRC), 3) sisal and glass fiber reinforced concrete (SGFRC), 4, glass fiber reinforced concrete (GFRC). Investigated properties were compressive strength, splitting tensile strength, flexural tensile strength and workability. The results of fiber reinforced concrete mixes were compared with plain concrete to investigate the effect of fibers on the mechanical properties of fiber reinforced concrete. It was determined that addition of different kinds of fibers (natural and synthetic) is very useful to produce concrete. The addition of fibers was resulted into higher compressive strength, splitting and tensile strength. However, the workability of the fiber reinforced concrete was found lower than the plain concrete due to the addition of fibers in the concrete.


2015 ◽  
Vol 663 ◽  
pp. 115-123
Author(s):  
Sergio Martínez-Martínez ◽  
Francisco A. Corpas-Iglesias

Fiber concretes have been revolutionizing the market, as well as lower operating costs, structurally act. The total or partial replacement of steel with natural fiber reinforced concrete could be an economical way to provide an alternative method to achieve greater security in concrete structures, as well as a way to use materials that are energy efficient, economic and ecological.Sisal fiber reinforcement is promising for use in composite materials, due to their low cost, low density, high strength and specific modulus, without risk to health, readily available in some countries and renewal.We studied four different dosages of concrete: without fiber, with two different types of polypropylene (PP) fibers and with sisal fiber. Consistency of fresh concrete, bulk density, water absorption, capillary absorption, compressive strength and microstructural properties values of the samples were investigated.Regarding the consistency of fresh concrete, measured by testing Abrams cone, as the results show a substantial difference between the flowability of the concrete without addition of fibers and other dosages with different types of fibers studied. The compressive strength test at 7 and 21 days also shows resistance as early ages performed fiber, while with increasing days of curing, the resistance becomes a reaction product of cement and pozzolanic water have no effect added fiber. Absorption tests and capillary absorption of water, like the above, consistent with the results shown bibliographic polled, the results being higher in both assays for dosages comprised of PP and sisal fibers.


2020 ◽  
Vol 4 (1) ◽  
pp. 21-25
Author(s):  
Fauzi Widyawati

Some time ago in the region of West Nusa Tenggara (NTB) experienced earthquake shocks which shocked the community so that many buildings were destroyed and razed to the ground. While the current use of plastic waste is a concern of the community and government, especially in the NTB region. So this background is the basis of research to make earthquake-resistant lightweight bricks by utilizing PET plastic waste to replace coarse aggregate as a mixture and use sisal fiber as a reinforcement to strengthen the strength of lightweight bricks. The purpose of this research is to find out how to make light brick type CLC (Cellular Lightweight Concrete) by utilizing PET plastic waste and sisal fiber, to determine the effect of the addition of PET plastic and sisal fiber to the mechanical properties of light bricks, and to determine the optimum composition of the addition of plastic PET and sisal fiber in the manufacture of lightweight brick CLC. The use of PET plastic and sisal fiber produces brick with an average density of 1,830,419 kg / m3 for 1: 1 variation samples, 1,880 kg / m3 for 4: 1 variation samples, and 1,887,654 kg / m3 for 1: variation samples 4. Maximum compressive strength is achieved in 1: 4 variation samples ie samples with the addition of sisal fiber 4 times more than PET plastic. Based on the results of the measurement of the density of bricks, only the sample variation 1: 1 that meets the standards of SNI 2847-2013 light brick (1,140-1,840 kg / m3). The addition of sisal fiber which is 4 times more than PET plastic (sample variation 1: 4) has the highest compressive strength value of 8.5 MPa and is included in the category of lightweight brick quality I.


Sign in / Sign up

Export Citation Format

Share Document