The effect of Thymus vulgaris and Thymbra spicata essential oils and/or extracts in pectin edible coating on the preservation of sliced bolognas

Meat Science ◽  
2021 ◽  
pp. 108697
Author(s):  
Assistant Prof.Ayça Gedikoğlu
Planta Medica ◽  
2007 ◽  
Vol 73 (09) ◽  
Author(s):  
EG Nkouaya Mbanjo ◽  
F Tchoumbougnang ◽  
PM Jazet Dongmo ◽  
ML Sameza ◽  
PH Amvam Zollo ◽  
...  

2018 ◽  
Vol 36 (2) ◽  
pp. 45-57
Author(s):  
Ben A. Bergmann ◽  
John M. Dole

Abstract We assessed the degree to which 16 post-infection treatments controlled Botrytis (Botrytis cinerea Pers. ex. Fr.) damage in cut roses (Rosa × hybrida). Additional experiments examined whether essential oils (EO) of cinnamon (Cinnamomum zeylanicum Blume) leaf (CLO), clove (Eugenia caryophyllata Thunb.) bud (CBO), and thyme (Thymus vulgaris L.) (TO) could reduce damage in Botrytis-infected cut roses. The 16 treatments applied to ‘Light Orlando' cut roses differed in reducing Botrytis damage and causing phytotoxicity damage. Only the synthetic fungicide fludioxonil [applied as 0.23 g · L−1 (0.00024 oz · fl oz−1) Medallion®] resulted in the desirable combination of greatly reduced stem termination frequency due to Botrytis damage and relatively minor flower phytotoxicity. When applied to cut rose ‘Freedom' or cultivars with light colored flowers (‘Cool Water', ‘Jessika', ‘Polar Star', ‘Tiffany'), all EO aqueous solutions caused pronounced phytotoxicity damage, but only TO reduced Botrytis damage significantly compared to untreated flowers. Roses exposed to EO vapor rather than an aqueous solution tended to exhibit less phytotoxicity. Vapors of CLO and CBO tended to reduce Botrytis damage less and caused greater flower phytotoxicity than TO vapor and aqueous fludioxonil. Thyme oil vapor exposures of 4.6 and 9.1 ppm warrant further investigation. Index words: Botrytis blight, Botrytis cinerea Pers. ex. Fr., cut flowers, floriculture, fungicide, gray mold, Rosa × hybrida. Chemicals used in this study: Bacillus subtilis (Cease®), bleach (Clorox®), chlorothalonil (Daconil®), copper sulphate (Phyton® 27), fenhexamide (Elevate®), fludioxonil (Medallion®), hydrogen peroxide (ZeroTol® 2.0), iprodione (Chipco® 26019 Flo), potassium bicarbonate (Milstop®), pyraclostrobin + boscalid (Pageant® Intrinsic®). Species used in this study: Rose (Rosa × hybrida) ‘Cool Water', ‘Freedom', ‘Jessika', ‘Polar Star', ‘Tiffany', Botrytis (Botrytis cinerea Pers. ex. Fr.).


2007 ◽  
Vol 76 (3) ◽  
pp. 357-361 ◽  
Author(s):  
Š. Faix ◽  
Š. Juhas ◽  
Z. Faixová

The aim of this study was to determine the effects of four essential oils intake by feed, namely Origanum vulgare, Thymus vulgaris, Cinnamomum zeylanicum Ness, and Syzygium aromaticum on antioxidant status in mice in vivo. Essential oils were in the aether oleum form. They were diluted with ethanol absolute mixed with ground pelett (0.1, 0.25, 0.57 and 1% concentration) and thereafter ethanol was evaporated. SOD, GPx activities and TAS were measured in erythrocytes and plasma spectrophotometrically with Ransod, Ransel and TAS kits from RANDOX, respectively. GPX activity showed a significant increase in 0.25% and 0.1% concentration of Origani aetheroleum. The GPx activities were decreased in 1% concentration of Thymi aetheroleum and 0.57% concentration of Cinnamomi aetheroleum and 0.57% concentration of Caryophylli aetheroleum. The total antioxidant status showed a significant decrease in 1 % concentration of Origani aetheroleum and significantly increased in 0.1% concentration. The same results were found in Thymi aetheroleum. Cinnamomi aetheroleum and Caryophylli aetheroleum had not effect on total antioxidant status. SOD activities were not significantly changed after intake of essential oils. In conclusion, our results showed, that concentration of essential oil is very important for antioxidant status and also for metabolism of mice, because a high dose of essential oil has adverse effect on metabolism of mice, representated by a lower growth of the body weight. On the other hand, essential oils at lower concentrations have positive effect on antioxidant status of mice.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1474
Author(s):  
Andrés Martínez ◽  
Marcela Manrique-Moreno ◽  
Maria C. Klaiss-Luna ◽  
Elena Stashenko ◽  
German Zafra ◽  
...  

Biofilm as a cellular conformation confers survival properties to microbial populations and favors microbial resistance. Here, we investigated the antimicrobial, antibiofilm, antimotility, antihemolytic activity, and the interaction with synthetic membranes of 15 essential oils (EOs) on E. coli ATCC 25922 and S. aureus ATCC 29213. Antimicrobial activity of EOs was determined through microdilution method; development of the biofilm was assessed using the crystal violet assay and SEM microscopy. Results indicate that Lippia origanoides thymol–carvacrol II chemotype (LTC II) and Thymus vulgaris (TV) exhibited a significant antibacterial activity, with MIC values of 0.45 and 0.75 mg/mL, respectively. The percentage of biofilm formation inhibition was greater than 70% at subinhibitory concentrations (MIC50) for LTC II EO. The results demonstrate that these two oils had significantly reduced the hemolytic effect of S. aureus by 54% and 32%, respectively, and the mobility capacity by swimming in E. coli with percentages of decrease of 55% and 47%, respectively. The results show that LTC II and TV EOs can interact with the hydrophobic core of lipid bilayers and alter the physicochemical properties of membranes. The findings suggest that LTC II and TV oils may potentially be used to aid in the treatment of S. aureus and E. coli infections.


Sign in / Sign up

Export Citation Format

Share Document